diclofenac has been researched along with montelukast in 14 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 1 (7.14) | 18.2507 |
2000's | 4 (28.57) | 29.6817 |
2010's | 8 (57.14) | 24.3611 |
2020's | 1 (7.14) | 2.80 |
Authors | Studies |
---|---|
Lombardo, F; Obach, RS; Waters, NJ | 1 |
He, Z; Li, H; Liu, J; Liu, X; Sui, X; Sun, J; Sun, Y; Yan, Z | 1 |
Chupka, J; El-Kattan, A; Feng, B; Miller, HR; Obach, RS; Troutman, MD; Varma, MV | 1 |
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A | 1 |
Chang, G; El-Kattan, A; Miller, HR; Obach, RS; Rotter, C; Steyn, SJ; Troutman, MD; Varma, MV | 1 |
Fisk, L; Greene, N; Naven, RT; Note, RR; Patel, ML; Pelletier, DJ | 1 |
Ekins, S; Williams, AJ; Xu, JJ | 1 |
Chen, M; Fang, H; Liu, Z; Shi, Q; Tong, W; Vijay, V | 1 |
Ambroso, JL; Ayrton, AD; Baines, IA; Bloomer, JC; Chen, L; Clarke, SE; Ellens, HM; Harrell, AW; Lovatt, CA; Reese, MJ; Sakatis, MZ; Taylor, MA; Yang, EY | 1 |
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
Enrique, E; Gaig, P; GarcĂa-Ortega, P; San Miguel, MM | 1 |
Chang, SY; Cui, D; Li, W; Rodrigues, AD; Traeger, SC; Wang, B; Wen, B; Zhang, H | 1 |
Al-Huniti, N; Bui, KH; Cheung, SYA; Johnson, TN; Li, J; Xu, H; Zhou, D; Zhou, W | 1 |
Abdelhady, SA; Abdelmawgoud, EM; Al-Shafie, TA; Ali, MA; El-Mas, MM; Yacout, DM | 1 |
1 review(s) available for diclofenac and montelukast
Article | Year |
---|---|
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
13 other study(ies) available for diclofenac and montelukast
Article | Year |
---|---|
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding | 2008 |
First-principle, structure-based prediction of hepatic metabolic clearance values in human.
Topics: Computational Biology; Drug Discovery; Hepatocytes; Humans; Hydrogen-Ion Concentration; Liver; Metabolic Clearance Rate; Models, Molecular; Pharmaceutical Preparations; Pharmacokinetics; Quantitative Structure-Activity Relationship; Sensitivity and Specificity; Software | 2009 |
Physicochemical determinants of human renal clearance.
Topics: Humans; Hydrogen Bonding; Hydrogen-Ion Concentration; Hydrophobic and Hydrophilic Interactions; Kidney; Metabolic Clearance Rate; Molecular Weight | 2009 |
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship | 2010 |
Physicochemical space for optimum oral bioavailability: contribution of human intestinal absorption and first-pass elimination.
Topics: Administration, Oral; Biological Availability; Humans; Intestinal Absorption; Pharmaceutical Preparations | 2010 |
Developing structure-activity relationships for the prediction of hepatotoxicity.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Humans; Structure-Activity Relationship; Tetracyclines; Thiophenes | 2010 |
A predictive ligand-based Bayesian model for human drug-induced liver injury.
Topics: Bayes Theorem; Chemical and Drug Induced Liver Injury; Humans; Ligands | 2010 |
FDA-approved drug labeling for the study of drug-induced liver injury.
Topics: Animals; Benchmarking; Biomarkers, Pharmacological; Chemical and Drug Induced Liver Injury; Drug Design; Drug Labeling; Drug-Related Side Effects and Adverse Reactions; Humans; Pharmaceutical Preparations; Reproducibility of Results; United States; United States Food and Drug Administration | 2011 |
Preclinical strategy to reduce clinical hepatotoxicity using in vitro bioactivation data for >200 compounds.
Topics: Chemical and Drug Induced Liver Injury; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Decision Trees; Drug Evaluation, Preclinical; Drug-Related Side Effects and Adverse Reactions; Glutathione; Humans; Liver; Pharmaceutical Preparations; Protein Binding | 2012 |
Failure of montelukast to prevent anaphylaxis to diclofenac.
Topics: Acetates; Adult; Anaphylaxis; Anti-Inflammatory Agents, Non-Steroidal; Aspirin; Cyclopropanes; Diclofenac; Drug Hypersensitivity; Humans; Leukotriene Antagonists; Male; Quinolines; Sulfides; Treatment Failure | 1999 |
Confirmation that cytochrome P450 2C8 (CYP2C8) plays a minor role in (S)-(+)- and (R)-(-)-ibuprofen hydroxylation in vitro.
Topics: Acetates; Antibodies, Monoclonal; Aryl Hydrocarbon Hydroxylases; Catalysis; Cyclopropanes; Cytochrome P-450 CYP2C19; Cytochrome P-450 CYP2C8; Cytochrome P-450 CYP2C9; Cytochrome P-450 CYP3A; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Diclofenac; Enzyme Inhibitors; Genotype; Humans; Hydroxylation; Ibuprofen; Ketoconazole; Kinetics; Mephenytoin; Microsomes, Liver; Quinolines; Recombinant Proteins; Stereoisomerism; Sulfaphenazole; Sulfides; Tandem Mass Spectrometry | 2008 |
Predictive Performance of Physiologically Based Pharmacokinetic (PBPK) Modeling of Drugs Extensively Metabolized by Major Cytochrome P450s in Children.
Topics: Acetates; Analgesics, Opioid; Anti-Asthmatic Agents; Anti-Inflammatory Agents, Non-Steroidal; Antifungal Agents; Bronchodilator Agents; Child; Child, Preschool; Cyclopropanes; Cytochrome P-450 CYP1A2; Cytochrome P-450 CYP2C19; Cytochrome P-450 CYP2C8; Cytochrome P-450 CYP2C9; Cytochrome P-450 CYP2D6; Cytochrome P-450 CYP3A; Cytochrome P-450 Enzyme System; Diclofenac; Esomeprazole; Histamine H1 Antagonists, Non-Sedating; Humans; Infant; Infant, Newborn; Itraconazole; Lansoprazole; Loratadine; Models, Biological; Ondansetron; Pharmaceutical Preparations; Pharmacokinetics; Proton Pump Inhibitors; Quinolines; Serotonin Antagonists; Sufentanil; Sulfides; Theophylline; Tramadol | 2018 |
Montelukast potentiates the antiinflammatory effect of NSAIDs in the rat paw formalin model and simultaneously minimizes the risk of gastric damage.
Topics: Acetates; Animals; Anti-Inflammatory Agents, Non-Steroidal; Celecoxib; Cyclooxygenase 2; Cyclopropanes; Diclofenac; Formaldehyde; Inflammation; Male; Nitric Oxide Synthase Type II; Quinolines; Rats; Rats, Wistar; Risk; Signal Transduction; Stomach; Sulfides | 2021 |