diclofenac has been researched along with buspirone in 18 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 5 (27.78) | 29.6817 |
2010's | 13 (72.22) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Johans, C; Kinnunen, PK; Söderlund, T; Suomalainen, P | 1 |
Benz, RD; Contrera, JF; Kruhlak, NL; Matthews, EJ; Weaver, JL | 1 |
He, Z; Li, H; Liu, J; Liu, X; Sui, X; Sun, J; Sun, Y; Yan, Z | 1 |
Ahlin, G; Artursson, P; Bergström, CA; Gustavsson, L; Karlsson, J; Larsson, R; Matsson, P; Norinder, U; Pedersen, JM | 1 |
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A | 1 |
Fisk, L; Greene, N; Naven, RT; Note, RR; Patel, ML; Pelletier, DJ | 1 |
Glen, RC; Lowe, R; Mitchell, JB | 1 |
Ekins, S; Williams, AJ; Xu, JJ | 1 |
Claxton, CR; Curran, RE; Harradine, PJ; Hutchison, L; Littlewood, P; Martin, IJ | 1 |
Chen, M; Fang, H; Liu, Z; Shi, Q; Tong, W; Vijay, V | 1 |
Artursson, P; Haglund, U; Karlgren, M; Kimoto, E; Lai, Y; Norinder, U; Vildhede, A; Wisniewski, JR | 1 |
Ambroso, JL; Ayrton, AD; Baines, IA; Bloomer, JC; Chen, L; Clarke, SE; Ellens, HM; Harrell, AW; Lovatt, CA; Reese, MJ; Sakatis, MZ; Taylor, MA; Yang, EY | 1 |
Cantin, LD; Chen, H; Kenna, JG; Noeske, T; Stahl, S; Walker, CL; Warner, DJ | 1 |
Giacomini, KM; Huang, Y; Khuri, N; Kido, Y; Kosaka, A; Morrissey, KM; Sali, A; Wittwer, MB; Zhang, X; Zur, AA | 1 |
Bellman, K; Knegtel, RM; Settimo, L | 1 |
Aleo, MD; Bonin, PD; Luo, Y; Potter, DM; Swiss, R; Will, Y | 1 |
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
Kalgutkar, AS; Obach, RS; Soglia, JR; Zhao, SX | 1 |
1 review(s) available for diclofenac and buspirone
Article | Year |
---|---|
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
17 other study(ies) available for diclofenac and buspirone
Article | Year |
---|---|
Surface activity profiling of drugs applied to the prediction of blood-brain barrier permeability.
Topics: Blood-Brain Barrier; Lipid Bilayers; Micelles; Permeability; Pharmaceutical Preparations; Structure-Activity Relationship; Surface Properties | 2004 |
Assessment of the health effects of chemicals in humans: II. Construction of an adverse effects database for QSAR modeling.
Topics: Adverse Drug Reaction Reporting Systems; Artificial Intelligence; Computers; Databases, Factual; Drug Prescriptions; Drug-Related Side Effects and Adverse Reactions; Endpoint Determination; Models, Molecular; Quantitative Structure-Activity Relationship; Software; United States; United States Food and Drug Administration | 2004 |
First-principle, structure-based prediction of hepatic metabolic clearance values in human.
Topics: Computational Biology; Drug Discovery; Hepatocytes; Humans; Hydrogen-Ion Concentration; Liver; Metabolic Clearance Rate; Models, Molecular; Pharmaceutical Preparations; Pharmacokinetics; Quantitative Structure-Activity Relationship; Sensitivity and Specificity; Software | 2009 |
Structural requirements for drug inhibition of the liver specific human organic cation transport protein 1.
Topics: Cell Line; Computer Simulation; Drug Design; Gene Expression Profiling; Humans; Hydrogen Bonding; Liver; Molecular Weight; Organic Cation Transporter 1; Pharmaceutical Preparations; Predictive Value of Tests; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Structure-Activity Relationship | 2008 |
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship | 2010 |
Developing structure-activity relationships for the prediction of hepatotoxicity.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Humans; Structure-Activity Relationship; Tetracyclines; Thiophenes | 2010 |
Predicting phospholipidosis using machine learning.
Topics: Animals; Artificial Intelligence; Databases, Factual; Drug Discovery; Humans; Lipidoses; Models, Biological; Phospholipids; Support Vector Machine | 2010 |
A predictive ligand-based Bayesian model for human drug-induced liver injury.
Topics: Bayes Theorem; Chemical and Drug Induced Liver Injury; Humans; Ligands | 2010 |
Control and measurement of plasma pH in equilibrium dialysis: influence on drug plasma protein binding.
Topics: Animals; Blood Proteins; Buffers; Carbon Dioxide; Chemical Phenomena; Dialysis; Dogs; Drug Evaluation, Preclinical; Humans; Hydrogen-Ion Concentration; Macaca fascicularis; Mice; Osmolar Concentration; Pharmaceutical Preparations; Protein Binding; Rats; Reproducibility of Results | 2011 |
FDA-approved drug labeling for the study of drug-induced liver injury.
Topics: Animals; Benchmarking; Biomarkers, Pharmacological; Chemical and Drug Induced Liver Injury; Drug Design; Drug Labeling; Drug-Related Side Effects and Adverse Reactions; Humans; Pharmaceutical Preparations; Reproducibility of Results; United States; United States Food and Drug Administration | 2011 |
Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): influence of protein expression on drug-drug interactions.
Topics: Atorvastatin; Biological Transport; Drug Interactions; Estradiol; Estrone; HEK293 Cells; Heptanoic Acids; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; In Vitro Techniques; Least-Squares Analysis; Liver; Liver-Specific Organic Anion Transporter 1; Models, Molecular; Multivariate Analysis; Organic Anion Transporters; Organic Anion Transporters, Sodium-Independent; Protein Isoforms; Pyrroles; Solute Carrier Organic Anion Transporter Family Member 1B3; Structure-Activity Relationship; Transfection | 2012 |
Preclinical strategy to reduce clinical hepatotoxicity using in vitro bioactivation data for >200 compounds.
Topics: Chemical and Drug Induced Liver Injury; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Decision Trees; Drug Evaluation, Preclinical; Drug-Related Side Effects and Adverse Reactions; Glutathione; Humans; Liver; Pharmaceutical Preparations; Protein Binding | 2012 |
Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Bile Acids and Salts; Cell Line; Chemical and Drug Induced Liver Injury; Humans; Quantitative Structure-Activity Relationship | 2012 |
Discovery of potent, selective multidrug and toxin extrusion transporter 1 (MATE1, SLC47A1) inhibitors through prescription drug profiling and computational modeling.
Topics: Computer Simulation; Fluorescent Dyes; Organic Cation Transport Proteins; Prescription Drugs | 2013 |
Comparison of the accuracy of experimental and predicted pKa values of basic and acidic compounds.
Topics: Chemistry, Pharmaceutical; Forecasting; Hydrogen-Ion Concentration; Pharmaceutical Preparations; Random Allocation | 2014 |
Human drug-induced liver injury severity is highly associated with dual inhibition of liver mitochondrial function and bile salt export pump.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Chemical and Drug Induced Liver Injury; Humans; Male; Mitochondria, Liver; Rats; Rats, Sprague-Dawley; Severity of Illness Index | 2014 |
Can in vitro metabolism-dependent covalent binding data in liver microsomes distinguish hepatotoxic from nonhepatotoxic drugs? An analysis of 18 drugs with consideration of intrinsic clearance and daily dose.
Topics: Acetaminophen; Binding Sites; Buspirone; Carbamazepine; Diclofenac; Diphenhydramine; Dose-Response Relationship, Drug; Drug Evaluation, Preclinical; Hepatocytes; Humans; Indomethacin; Meloxicam; Microsomes, Liver; Molecular Structure; Paroxetine; Piperazines; Propranolol; Raloxifene Hydrochloride; Simvastatin; Structure-Activity Relationship; Thiazines; Thiazoles; Ticrynafen; Toxicity Tests; Triazoles | 2008 |