diazoxide and nimodipine

diazoxide has been researched along with nimodipine in 15 studies

Research

Studies (15)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's1 (6.67)18.2507
2000's7 (46.67)29.6817
2010's7 (46.67)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Topliss, JG; Yoshida, F1
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J1
Lombardo, F; Obach, RS; Waters, NJ1
González-Díaz, H; Orallo, F; Quezada, E; Santana, L; Uriarte, E; Viña, D; Yáñez, M1
Chupka, J; El-Kattan, A; Feng, B; Miller, HR; Obach, RS; Troutman, MD; Varma, MV1
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1
Chang, G; El-Kattan, A; Miller, HR; Obach, RS; Rotter, C; Steyn, SJ; Troutman, MD; Varma, MV1
Afshari, CA; Eschenberg, M; Hamadeh, HK; Lee, PH; Lightfoot-Dunn, R; Morgan, RE; Qualls, CW; Ramachandran, B; Trauner, M; van Staden, CJ1
Afshari, CA; Chen, Y; Dunn, RT; Hamadeh, HK; Kalanzi, J; Kalyanaraman, N; Morgan, RE; van Staden, CJ1
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K1
Brodsky, JL; Chiang, A; Chung, WJ; Denny, RA; Goeckeler-Fried, JL; Havasi, V; Hong, JS; Keeton, AB; Mazur, M; Piazza, GA; Plyler, ZE; Rasmussen, L; Rowe, SM; Sorscher, EJ; Weissman, AM; White, EL1
Dessy, C; Godfraind, T1
Dzung, DT; Hoa, NK; Jörnvall, H; Norberg, A; Ostenson, CG; Sillard, R; Thuan, ND; Van Phan, D1
Beauvois, MC; Cheng-Xue, R; Gilon, P; Guiot, Y; Henquin, JC; Mattart, L; Quoix, N; Zeinoun, Z1
Mishra, S; Nguyen, KH; Nguyen, QT; Nyomba, BL; Pham, HD; Pham, TH; Ta, TN1

Reviews

1 review(s) available for diazoxide and nimodipine

ArticleYear
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
    Drug discovery today, 2016, Volume: 21, Issue:4

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk

2016

Other Studies

14 other study(ies) available for diazoxide and nimodipine

ArticleYear
QSAR model for drug human oral bioavailability.
    Journal of medicinal chemistry, 2000, Jun-29, Volume: 43, Issue:13

    Topics: Administration, Oral; Biological Availability; Humans; Models, Biological; Models, Molecular; Pharmaceutical Preparations; Pharmacokinetics; Structure-Activity Relationship

2000
Chemical genetics reveals a complex functional ground state of neural stem cells.
    Nature chemical biology, 2007, Volume: 3, Issue:5

    Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells

2007
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
    Drug metabolism and disposition: the biological fate of chemicals, 2008, Volume: 36, Issue:7

    Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding

2008
Quantitative structure-activity relationship and complex network approach to monoamine oxidase A and B inhibitors.
    Journal of medicinal chemistry, 2008, Nov-13, Volume: 51, Issue:21

    Topics: Computational Biology; Drug Design; Humans; Isoenzymes; Molecular Structure; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Quantitative Structure-Activity Relationship

2008
Physicochemical determinants of human renal clearance.
    Journal of medicinal chemistry, 2009, Aug-13, Volume: 52, Issue:15

    Topics: Humans; Hydrogen Bonding; Hydrogen-Ion Concentration; Hydrophobic and Hydrophilic Interactions; Kidney; Metabolic Clearance Rate; Molecular Weight

2009
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
Physicochemical space for optimum oral bioavailability: contribution of human intestinal absorption and first-pass elimination.
    Journal of medicinal chemistry, 2010, Feb-11, Volume: 53, Issue:3

    Topics: Administration, Oral; Biological Availability; Humans; Intestinal Absorption; Pharmaceutical Preparations

2010
Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development.
    Toxicological sciences : an official journal of the Society of Toxicology, 2010, Volume: 118, Issue:2

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Assay; Biological Transport; Cell Line; Cell Membrane; Chemical and Drug Induced Liver Injury; Cytoplasmic Vesicles; Drug Evaluation, Preclinical; Humans; Liver; Rats; Reproducibility of Results; Spodoptera; Transfection; Xenobiotics

2010
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
    Toxicological sciences : an official journal of the Society of Toxicology, 2013, Volume: 136, Issue:1

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Transport; Chemical and Drug Induced Liver Injury; Cluster Analysis; Drug-Related Side Effects and Adverse Reactions; Humans; Liver; Male; Multidrug Resistance-Associated Proteins; Pharmacokinetics; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Risk Assessment; Risk Factors; Toxicity Tests

2013
Increasing the Endoplasmic Reticulum Pool of the F508del Allele of the Cystic Fibrosis Transmembrane Conductance Regulator Leads to Greater Folding Correction by Small Molecule Therapeutics.
    PloS one, 2016, Volume: 11, Issue:10

    Topics: Alleles; Benzoates; Cells, Cultured; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Endoplasmic Reticulum; Furans; Gene Deletion; HEK293 Cells; HeLa Cells; High-Throughput Screening Assays; Humans; Hydroxamic Acids; Microscopy, Fluorescence; Protein Folding; Protein Structure, Tertiary; Pyrazoles; RNA, Messenger; Small Molecule Libraries; Ubiquitination; Vorinostat

2016
The effect of L-type calcium channel modulators on the mobilization of intracellular calcium stores in guinea-pig intestinal smooth muscle.
    British journal of pharmacology, 1996, Volume: 119, Issue:1

    Topics: 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester; Animals; Caffeine; Calcium; Calcium Channel Blockers; Calcium Channels; Diazoxide; Fura-2; Guinea Pigs; Histamine; Ileum; Isometric Contraction; Muscle, Smooth; Nimodipine; Ryanodine; Thapsigargin

1996
The possible mechanisms by which phanoside stimulates insulin secretion from rat islets.
    The Journal of endocrinology, 2007, Volume: 192, Issue:2

    Topics: Animals; Calcium Channel Blockers; Calcium Channels, L-Type; Cyclic AMP-Dependent Protein Kinases; Diabetes Mellitus, Type 2; Diazoxide; Exocytosis; Glucose; Hypoglycemic Agents; Insulin; Insulin Secretion; Islets of Langerhans; Isoquinolines; Male; Naphthalenes; Nimodipine; Perfusion; Pertussis Toxin; Potassium Channels; Potassium Chloride; Protein Kinase C; Rats; Rats, Mutant Strains; Rats, Wistar; Saponins; Stimulation, Chemical; Sulfonamides; Tissue Culture Techniques

2007
Glucose and pharmacological modulators of ATP-sensitive K+ channels control [Ca2+]c by different mechanisms in isolated mouse alpha-cells.
    Diabetes, 2009, Volume: 58, Issue:2

    Topics: Animals; Azides; Calcium; Diazoxide; gamma-Aminobutyric Acid; Glucagon-Secreting Cells; Glucose; Insulin-Secreting Cells; KATP Channels; Mice; Mice, Inbred Strains; NADP; Nimodipine; Tolbutamide

2009
Nuciferine stimulates insulin secretion from beta cells-an in vitro comparison with glibenclamide.
    Journal of ethnopharmacology, 2012, Jul-13, Volume: 142, Issue:2

    Topics: Animals; Antihypertensive Agents; Aporphines; ATP-Binding Cassette Transporters; Cell Line; Cyclic AMP-Dependent Protein Kinases; Diazoxide; Glucose; Glyburide; Hypoglycemic Agents; Insulin; Insulin Secretion; Insulin-Secreting Cells; KATP Channels; Mice; Nelumbo; Nimodipine; Plant Extracts; Potassium; Potassium Channels, Inwardly Rectifying; Protein Kinase C; Receptors, Drug; Sulfonylurea Receptors; Vietnam

2012