diazoxide and kainic acid

diazoxide has been researched along with kainic acid in 6 studies

Research

Studies (6)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's3 (50.00)18.2507
2000's3 (50.00)29.6817
2010's0 (0.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J1
Baraldi, M; Bertolino, M; Braghiroli, D; Costa, E; DiBella, M; Parenti, C; Vicini, S1
Greenberg, DA; Koretz, B; Lustig, HS; von B Ahern, K; Wang, N1
Tang, CM; Yamada, KA1
Baraldi, M; Braghiroli, D; Di Bella, M; Losi, G; Puia, G; Razzini, G1
Haller, M; Mironov, SL; Richter, DW1

Other Studies

6 other study(ies) available for diazoxide and kainic acid

ArticleYear
Chemical genetics reveals a complex functional ground state of neural stem cells.
    Nature chemical biology, 2007, Volume: 3, Issue:5

    Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells

2007
Modulation of AMPA/kainate receptors by analogues of diazoxide and cyclothiazide in thin slices of rat hippocampus.
    Receptors & channels, 1993, Volume: 1, Issue:4

    Topics: Action Potentials; Animals; Benzothiadiazines; Diazoxide; Glutamates; Glutamic Acid; Hippocampus; In Vitro Techniques; Kainic Acid; Membrane Potentials; Molecular Structure; Rats; Receptors, AMPA; Receptors, Kainic Acid

1993
Pre- and post-synaptic modulators of excitatory neurotransmission: comparative effects on hypoxia/hypoglycemia in cortical cultures.
    Brain research, 1994, Apr-18, Volume: 643, Issue:1-2

    Topics: Animals; Aspartic Acid; Benzopyrans; Calcium Channel Blockers; Cell Hypoxia; Cells, Cultured; Cerebral Cortex; Cromakalim; Diazoxide; Embryo, Mammalian; Glutamates; Hypoglycemia; Kainic Acid; Kinetics; L-Lactate Dehydrogenase; Neurons; Potassium Channels; Pyrroles; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Synapses; Synaptic Transmission; Time Factors

1994
Benzothiadiazides inhibit rapid glutamate receptor desensitization and enhance glutamatergic synaptic currents.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 1993, Volume: 13, Issue:9

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Benzothiadiazines; Cell Line; Cells, Cultured; Diazoxide; Diuretics; Electric Stimulation; Evoked Potentials; Hippocampus; Humans; Kainic Acid; Membrane Potentials; Molecular Structure; N-Methylaspartate; Neurons; Quinoxalines; Quisqualic Acid; Rats; Receptors, Glutamate; Structure-Activity Relationship; Synapses; Time Factors

1993
Modulation of kainate--activated currents by diazoxide and cyclothiazide analogues (IDRA) in cerebellar granule neurons.
    Progress in neuro-psychopharmacology & biological psychiatry, 2000, Volume: 24, Issue:6

    Topics: Action Potentials; Animals; Benzothiadiazines; Cerebellum; Diazoxide; Electrophysiology; Kainic Acid; Patch-Clamp Techniques; Rats; Rats, Sprague-Dawley; Receptors, Glutamate; Vasodilator Agents

2000
Intrinsic optical signals in respiratory brain stem regions of mice: neurotransmitters, neuromodulators, and metabolic stress.
    Journal of neurophysiology, 2001, Volume: 86, Issue:1

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Adenosine; Adenosine Triphosphate; Animals; Animals, Newborn; Anti-Bacterial Agents; Antihypertensive Agents; Diazoxide; Energy Metabolism; Enzyme Inhibitors; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Glutamic Acid; Glyburide; Hypoglossal Nerve; Hypoglycemic Agents; Hypoxia; Kainic Acid; Macrolides; Mice; Mitochondrial Swelling; N-Methylaspartate; Optics and Photonics; Organ Culture Techniques; Ouabain; Potassium Channels; Respiratory Center; Sodium-Potassium-Exchanging ATPase; Tetrodotoxin

2001