diazepam and ticlopidine

diazepam has been researched along with ticlopidine in 7 studies

Research

Studies (7)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's2 (28.57)29.6817
2010's4 (57.14)24.3611
2020's1 (14.29)2.80

Authors

AuthorsStudies
Benz, RD; Contrera, JF; Kruhlak, NL; Matthews, EJ; Weaver, JL1
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1
Choi, SS; Contrera, JF; Hastings, KL; Kruhlak, NL; Sancilio, LF; Weaver, JL; Willard, JM1
García-Mera, X; González-Díaz, H; Prado-Prado, FJ1
Artursson, P; Haglund, U; Karlgren, M; Kimoto, E; Lai, Y; Norinder, U; Vildhede, A; Wisniewski, JR1
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K1
Korzekwa, K; Nagar, S; Paragas, EM; Wang, Z1

Reviews

1 review(s) available for diazepam and ticlopidine

ArticleYear
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
    Drug discovery today, 2016, Volume: 21, Issue:4

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk

2016

Other Studies

6 other study(ies) available for diazepam and ticlopidine

ArticleYear
Assessment of the health effects of chemicals in humans: II. Construction of an adverse effects database for QSAR modeling.
    Current drug discovery technologies, 2004, Volume: 1, Issue:4

    Topics: Adverse Drug Reaction Reporting Systems; Artificial Intelligence; Computers; Databases, Factual; Drug Prescriptions; Drug-Related Side Effects and Adverse Reactions; Endpoint Determination; Models, Molecular; Quantitative Structure-Activity Relationship; Software; United States; United States Food and Drug Administration

2004
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
Development of a phospholipidosis database and predictive quantitative structure-activity relationship (QSAR) models.
    Toxicology mechanisms and methods, 2008, Volume: 18, Issue:2-3

    Topics:

2008
Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species.
    Bioorganic & medicinal chemistry, 2010, Mar-15, Volume: 18, Issue:6

    Topics: Antiparasitic Agents; Molecular Structure; Neural Networks, Computer; Parasitic Diseases; Quantitative Structure-Activity Relationship; Species Specificity; Thermodynamics

2010
Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): influence of protein expression on drug-drug interactions.
    Journal of medicinal chemistry, 2012, May-24, Volume: 55, Issue:10

    Topics: Atorvastatin; Biological Transport; Drug Interactions; Estradiol; Estrone; HEK293 Cells; Heptanoic Acids; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; In Vitro Techniques; Least-Squares Analysis; Liver; Liver-Specific Organic Anion Transporter 1; Models, Molecular; Multivariate Analysis; Organic Anion Transporters; Organic Anion Transporters, Sodium-Independent; Protein Isoforms; Pyrroles; Solute Carrier Organic Anion Transporter Family Member 1B3; Structure-Activity Relationship; Transfection

2012
Complex Cytochrome P450 Kinetics Due to Multisubstrate Binding and Sequential Metabolism. Part 2. Modeling of Experimental Data.
    Drug metabolism and disposition: the biological fate of chemicals, 2021, Volume: 49, Issue:12

    Topics: Binding Sites; Biophysical Phenomena; Biotransformation; Cytochrome P-450 CYP3A; Diazepam; Drug Elimination Routes; Humans; In Vitro Techniques; Kinetics; Midazolam; Network Pharmacology; Ticlopidine

2021