diamide has been researched along with catechol* in 2 studies
1 review(s) available for diamide and catechol
Article | Year |
---|---|
Proteomic signatures uncover thiol-specific electrophile resistance mechanisms in Bacillus subtilis.
Proteomic and transcriptomics signatures are powerful tools for visualizing global changes in gene expression in bacterial cells after exposure to stress, starvation or toxic compounds. Based on the global expression profile and the dissection into specific regulons, this knowledge can be used to predict the mode of action for novel antimicrobial compounds. This review summarizes our recent progress of proteomic signatures in the model bacterium for low-GC Gram-positive bacteria Bacillus subtilis in response to the antimicrobial compounds phenol, catechol, salicylic acid, 2-methylhydroquinone (2-MHQ) and 6-brom-2-vinyl-chroman-4-on (chromanon). Catechol, 2-MHQ and diamide displayed a common mode of action, as revealed by the induction of the thiol-specific oxidative stress response. In addition, multiple dioxygenases/glyoxalases, azoreductases and nitroreductases were induced by thiol-reactive compounds that are regulated by two novel thiol-specific regulators, YodB and MhqR (YkvE), both of which contribute to electrophile resistance in B. subtilis. These novel thiol-stress-responsive mechanisms are highly conserved among Gram-positive bacteria and are thought to have evolved to detoxify quinone-like electrophiles. Topics: Bacillus subtilis; Bacterial Proteins; Catechols; Cell Wall; Chromones; Diamide; Drug Resistance, Bacterial; Electrophoresis, Gel, Two-Dimensional; Enzyme Induction; Gene Expression Regulation, Bacterial; Gram-Positive Bacteria; Hydroquinones; Nitrofurantoin; Oxidative Stress; Phenol; Proteomics; Quinones; Regulon; Salicylic Acid; Sulfhydryl Compounds | 2008 |
1 other study(ies) available for diamide and catechol
Article | Year |
---|---|
Regulation of quinone detoxification by the thiol stress sensing DUF24/MarR-like repressor, YodB in Bacillus subtilis.
Recently, we showed that the MarR-type repressor YkvE (MhqR) regulates multiple dioxygenases/glyoxalases, oxidoreductases and the azoreductase encoding yvaB (azoR2) gene in response to thiol-specific stress conditions, such as diamide, catechol and 2-methylhydroquinone (MHQ). Here we report on the regulation of the yocJ (azoR1) gene encoding another azoreductase by the novel DUF24/MarR-type repressor, YodB after exposure to thiol-reactive compounds. DNA binding activity of YodB is directly inhibited by thiol-reactive compounds in vitro. Mass spectrometry identified YodB-Cys-S-adducts that are formed upon exposure of YodB to MHQ and catechol in vitro. This confirms that catechol and MHQ are auto-oxidized to toxic ortho- and para-benzoquinones which act like diamide as thiol-reactive electrophiles. Mutational analyses further showed that the conserved Cys6 residue of YodB is required for optimal repression in vivo and in vitro while substitution of all three Cys residues of YodB affects induction of azoR1 transcription. Finally, phenotype analyses revealed that both azoreductases, AzoR1 and AzoR2 confer resistance to catechol, MHQ, 1,4-benzoquinone and diamide. Thus, both azoreductases that are controlled by different regulatory mechanisms have common functions in quinone and azo-compound reduction to protect cells against the thiol reactivity of electrophiles. Topics: Bacillus subtilis; Bacterial Proteins; Catechols; Cysteine; Diamide; DNA Footprinting; DNA-Binding Proteins; Gene Expression Regulation, Bacterial; Hydrogen Peroxide; Hydroquinones; Mass Spectrometry; Models, Molecular; NADH, NADPH Oxidoreductases; Nitroreductases; Oligonucleotide Array Sequence Analysis; Oxidative Stress; Promoter Regions, Genetic; Proteomics; Quinones; Repressor Proteins; Sulfhydryl Compounds; Transcription, Genetic; Up-Regulation | 2008 |