diadinoxanthin and diatoxanthin

diadinoxanthin has been researched along with diatoxanthin* in 27 studies

Other Studies

27 other study(ies) available for diadinoxanthin and diatoxanthin

ArticleYear
Isolation of fucoxanthin chlorophyll protein complexes of the centric diatom Thalassiosira pseudonana associated with the xanthophyll cycle enzyme diadinoxanthin de-epoxidase.
    IUBMB life, 2023, Volume: 75, Issue:1

    In the present study, low concentrations of the very mild detergent n-dodecyl-α-d-maltoside in conjunction with sucrose gradient ultracentrifugation were used to prepare fucoxanthin chlorophyll protein (FCP) complexes of the centric diatom Thalassiosira pseudonana. Two main FCP fractions were observed in the sucrose gradients, one in the upper part and one at high sucrose concentrations in the lower part of the gradient. The first fraction was dominated by the 18 kDa FCP protein band in SDS-gels. Since this fraction also contained other protein bands, it was designated as fraction enriched in FCP-A complex. The second fraction contained mainly the 21 kDa FCP band, which is typical for the FCP-B complex. Determination of the lipid composition showed that both FCP fractions contained monogalactosyl diacylglycerol as the main lipid followed by the second galactolipid of the thylakoid membrane, namely digalactosyl diacylglycerol. The negatively charged lipids sulfoquinovosyl diacylglycerol and phosphatidyl glycerol were also present in both fractions in pronounced concentrations. With respect to the pigment composition, the fraction enriched in FCP-A contained a higher amount of the xanthophyll cycle pigments diadinoxanthin (DD) and diatoxanthin (Dt), whereas the FCP-B fraction was characterized by a lower ratio of xanthophyll cycle pigments to the light-harvesting pigment fucoxanthin. Protein analysis by mass spectrometry revealed that in both FCP fractions the xanthophyll cycle enzyme diadinoxanthin de-epoxidase (DDE) was present. In addition, the analysis showed an enrichment of DDE in the fraction enriched in FCP-A but only a very low amount of DDE in the FCP-B fraction. In-vitro de-epoxidation assays, employing the isolated FCP complexes, were characterized by an inefficient conversion of DD to Dt. However, in line with the heterogeneous DDE distribution, the fraction enriched in FCP-A showed a more pronounced DD de-epoxidation compared with the FCP-B.

    Topics: Chlorophyll Binding Proteins; Diatoms; Diglycerides; Xanthophylls

2023
Excitation relaxation dynamics of carotenoids constituting the diadinoxanthin cycle.
    Photosynthesis research, 2022, Volume: 154, Issue:1

    Carotenoids (Cars) exhibit two functions in photosynthesis, light-harvesting and photoprotective functions, which are performed through the excited states of Cars. Therefore, increasing our knowledge on excitation relaxation dynamics of Cars is important for understanding of the functions of Cars. In light-harvesting complexes, there exist Cars functioning by converting the π-conjugation number in response to light conditions. It is well known that some microalgae have a mechanism controlling the conjugation number of Cars, called as the diadinoxanthin cycle; diadinoxanthin (10 conjugations) is accumulated under low light, whereas diatoxanthin (11 conjugations) appears under high light. However, the excitation relaxation dynamics of these two Cars have not been clarified. In the present study, we investigated excitation relaxation dynamics of diadinoxanthin and diatoxanthin in relation to their functions, by the ultrafast fluorescence spectroscopy. After an excitation to the S

    Topics: Acetone; Carotenoids; Chlorophyll; Chlorophyll A; Ethanol; Ether; Light-Harvesting Protein Complexes; Xanthophylls

2022
Identification of sequence motifs in Lhcx proteins that confer qE-based photoprotection in the diatom Phaeodactylum tricornutum.
    The Plant journal : for cell and molecular biology, 2021, Volume: 108, Issue:6

    Photosynthetic organisms in nature often experience light fluctuations. While low light conditions limit the energy uptake by algae, light absorption exceeding the maximal rate of photosynthesis may go along with enhanced formation of potentially toxic reactive oxygen species. To preempt high light-induced photodamage, photosynthetic organisms evolved numerous photoprotective mechanisms. Among these, energy-dependent fluorescence quenching (qE) provides a rapid mechanism to dissipate thermally the excessively absorbed energy. Diatoms thrive in all aquatic environments and thus belong to the most important primary producers on earth. qE in diatoms is provided by a concerted action of Lhcx proteins and the xanthophyll cycle pigment diatoxanthin. While the exact Lhcx activation mechanism of diatom qE is unknown, two lumen-exposed acidic amino acids within Lhcx proteins were proposed to function as regulatory switches upon light-induced lumenal acidification. By introducing a modified Lhcx1 lacking these amino acids into a Phaeodactylum tricornutum Lhcx1-null qE knockout line, we demonstrate that qE is unaffected by these two amino acids. Based on sequence comparisons with Lhcx4, being incapable of providing qE, we perform domain swap experiments of Lhcx4 with Lhcx1 and identify two peptide motifs involved in conferring qE. Within one of these motifs, we identify a tryptophan residue with a major influence on qE establishment. This tryptophan residue is located in close proximity to the diadinoxanthin/diatoxanthin-binding site based on the recently revealed diatom Lhc crystal structure. Our findings provide a structural explanation for the intimate link of Lhcx and diatoxanthin in providing qE in diatoms.

    Topics: Amino Acid Motifs; Diatoms; Fluorescence; Light-Harvesting Protein Complexes; Models, Molecular; Mutagenesis, Site-Directed; Protons; Tryptophan; Xanthophylls

2021
Light dependent accumulation of β-carotene enhances photo-acclimation of Euglena gracilis.
    Journal of photochemistry and photobiology. B, Biology, 2020, Volume: 209

    Carotenoids are essential components of photosynthetic organisms including land plants, algae, cyanobacteria, and photosynthetic bacteria. Although the light-mediated regulation of carotenoid biosynthesis, including the light/dark cycle as well as the dependence of carotenoid biosynthesis-related gene translation on light wavelength, has been investigated in land plants, these aspects have not been studied in microalgae. Here, we investigated carotenoid biosynthesis in Euglena gracilis and found that zeaxanthin accumulates in the dark. The major carotenoid species in E. gracilis, namely β-carotene, neoxanthin, diadinoxanthin and diatoxanthin, accumulated corresponding to the duration of light irradiation under the light/dark cycle, although the translation of carotenoid biosynthesis genes hardly changed. Irradiation with either blue or red-light (3 μmol photons m

    Topics: Acclimatization; beta Carotene; Chlorophyll; Euglena gracilis; Gene Expression Regulation; Light; Photosystem II Protein Complex; Xanthophylls; Zeaxanthins

2020
The effect of different light regimes on pigments in Coscinodiscus granii.
    Photosynthesis research, 2019, Volume: 140, Issue:3

    The influence of six different light regimes throughout the photosynthetically active radiation range (from 400 to 700 nm, including blue, green, yellow, red-orange, red, and white) at two intensities (100 and 300 µmol photons m

    Topics: beta Carotene; Chlorophyll; Diatoms; Light; Photosynthesis; Pigments, Biological; Xanthophylls; Zeaxanthins

2019
High-throughput screening Raman microspectroscopy for assessment of drug-induced changes in diatom cells.
    The Analyst, 2019, Aug-07, Volume: 144, Issue:15

    High-throughput screening Raman spectroscopy (HTS-RS) with automated localization algorithms offers unsurpassed speed and sensitivity to investigate the effect of dithiothreitol on the diatom Phaedactylum tricornutum. The HTS-RS capability that was demonstrated for this model system can be transferred to unmet analytical applications such as kinetic in vivo studies of microalgal assemblages.

    Topics: Algorithms; Diatoms; Dithiothreitol; High-Throughput Screening Assays; Light; Spectrum Analysis, Raman; Xanthophylls

2019
The diatom Phaeodactylum tricornutum adjusts nonphotochemical fluorescence quenching capacity in response to dynamic light via fine-tuned Lhcx and xanthophyll cycle pigment synthesis.
    The New phytologist, 2017, Volume: 214, Issue:1

    Diatoms contain a highly flexible capacity to dissipate excessively absorbed light by nonphotochemical fluorescence quenching (NPQ) based on the light-induced conversion of diadinoxanthin (Dd) into diatoxanthin (Dt) and the presence of Lhcx proteins. Their NPQ fine regulation on the molecular level upon a shift to dynamic light conditions is unknown. We investigated the regulation of Dd + Dt amount, Lhcx gene and protein synthesis and NPQ capacity in the diatom Phaeodactylum tricornutum after a change from continuous low light to 3 d of sine (SL) or fluctuating (FL) light conditions. Four P. tricornutum strains with different NPQ capacities due to different expression of Lhcx1 were included. All strains responded to dynamic light comparably, independently of initial NPQ capacity. During SL, NPQ capacity was strongly enhanced due to a gradual increase of Lhcx2 and Dd + Dt amount. During FL, cells enhanced their NPQ capacity on the first day due to increased Dd + Dt, Lhcx2 and Lhcx3; already by the second day light acclimation was accomplished. While quenching efficiency of Dt was strongly lowered during SL conditions, it remained high throughout the whole FL exposure. Our results highlight a more balanced and cost-effective photoacclimation strategy of P. tricornutum under FL than under SL conditions.

    Topics: Chlorophyll; Chlorophyll A; Diatoms; Fluorescence; Gene Expression Regulation, Bacterial; Light; Light-Harvesting Protein Complexes; Photosynthesis; Protein Biosynthesis; RNA, Messenger; Xanthophylls

2017
Differences in pigmentation between life cycle stages in Scrippsiella lachrymosa (dinophyceae).
    Journal of phycology, 2016, Volume: 52, Issue:1

    Various life cycle stages of cyst-producing dinoflagellates often appear differently colored under the microscope; gametes appear paler while zygotes are darker in comparison to vegetative cells. To compare physiological and photochemical competency, the pigment composition of discrete life cycle stages was determined for the common resting cyst-producing dinoflagellate Scrippsiella lachrymosa. Vegetative cells had the highest cellular pigment content (25.2 ± 0.5 pg · cell(-1) ), whereas gamete pigment content was 22% lower. The pigment content of zygotes was 82% lower than vegetative cells, even though they appeared darker under the microscope. Zygotes of S. lachrymosa contained significantly higher cellular concentrations of β-carotene (0.65 ± 0.15 pg · cell(-1) ) than all other life stages. Photoprotective pigments and the de-epoxidation ratio of xanthophylls-cycle pigments in S. lachrymosa were significantly elevated in zygotes and cysts compared to other stages. This suggests a role for accessory pigments in combating intracellular oxidative stress during sexual reproduction or encystment. Resting cysts contained some pigments even though chloroplasts were not visible, suggesting that the brightly colored accumulation body contained photosynthetic pigments. The differences in pigmentation between life stages have implications for interpretation of pigment data from field samples when sampled during dinoflagellate blooms.

    Topics: beta Carotene; Chlorophyll; Dinoflagellida; Life Cycle Stages; Oxidative Stress; Photosynthesis; Pigmentation; Xanthophylls; Zygote

2016
Screening of Diatom Strains and Characterization of Cyclotella cryptica as A Potential Fucoxanthin Producer.
    Marine drugs, 2016, Jul-08, Volume: 14, Issue:7

    Fucoxanthin has been receiving ever-increasing interest due to its broad health beneficial effects. Currently, seaweeds are the predominant source of natural fucoxanthin. However, the disappointingly low fucoxanthin content has impeded their use, driving the exploration of alternative fucoxanthin producers. In the present study, thirteen diatom strains were evaluated with respect to growth and fucoxanthin production potential. Cyclotella cryptica (CCMP 333), which grew well for fucoxanthin production under both photoautotrophic and heterotrophic growth conditions, was selected for further investigation. The supply of nitrate and light individually or in combination were all found to promote growth and fucoxanthin accumulation. When transferring heterotrophic cultures to light, fucoxanthin responded differentially to light intensities and was impaired by higher light intensity with a concomitant increase in diadinoxanthin and diatoxanthin, indicative of the modulation of Diadinoxanthin Cycle to cope with the light stress. Taken together, we, for the first time, performed the screening of diatom strains for fucoxanthin production potential and investigated in detail the effect of nutritional and environmental factors on C. cryptica growth and fucoxanthin accumulation. These results provide valuable implications into future engineering of C. cryptica culture parameters for improved fucoxanthin production and C. cryptica may emerge as a promising microalgal source of fucoxanthin.

    Topics: Diatoms; Light; Xanthophylls

2016
Column chromatography as a useful step in purification of diatom pigments.
    Acta biochimica Polonica, 2016, Volume: 63, Issue:3

    Fucoxanthin, diadinoxanthin and diatoxanthin are carotenoids found in brown algae and most other heterokonts. These pigments are involved in photosynthetic and photoprotective reactions, and they have many potential health benefits. They can be extracted from diatom Phaeodactylum tricornutum by sonication, extraction with chloroform : methanol and preparative thin layer chromatography. We assessed the utility of an additional column chromatography step in purification of these pigments. This novel addition to the isolation protocol increased the purity of fucoxanthin and allowed for concentration of diadinoxanthin and diatoxanthin before HPLC separation. The enhanced protocol is useful for obtaining high purity pigments for biochemical studies.

    Topics: Chloroform; Chromatography, High Pressure Liquid; Chromatography, Thin Layer; Diatoms; Liquid-Liquid Extraction; Methanol; Solvents; Sonication; Xanthophylls

2016
Utilization of light by fucoxanthin-chlorophyll-binding protein in a marine centric diatom, Chaetoceros gracilis.
    Photosynthesis research, 2015, Volume: 126, Issue:2-3

    The major light-harvesting pigment protein complex (fucoxanthin-chlorophyll-binding protein complex; FCP) was purified from a marine centric diatom, Chaetoceros gracilis, by mild solubilization followed by sucrose density gradient centrifugation, and then characterized. The dynamic light scattering measurement showed unimodality, indicating that the complex was highly purified. The amount of chlorophyll a (Chl a) bound to the purified FCP accounted for more than 60 % of total cellular Chl a. The complex was composed of three abundant polypeptides, although there are nearly 30 FCP-related genes. The two major components were identified as Fcp3 (Lhcf3)- and Fcp4 (Lhcf4)-equivalent proteins based on their internal amino acid sequences and a two-dimensional isoelectric focusing electrophoresis analysis developed in this work. Compared with the thylakoids, the FCP complex showed higher contents of fucoxanthin and chlorophyll c but lower contents of the xanthophyll cycle pigments diadinoxanthin and diatoxanthin. Fluorescence excitation spectra analyses indicated that light harvesting, rather than photosystem protection, is the major function of the purified FCP complex, which is associated with more than 60 % of total cellular Chl a. These findings suggest that the huge amount of Chl bound to the FCP complex composed of Lhcf3, Lhcf4, and an unidentified minor protein has a light-harvesting function to allow efficient photosynthesis under the dim-light conditions in the ocean.

    Topics: Carrier Proteins; Chlorophyll; Chlorophyll A; Diatoms; Light; Light-Harvesting Protein Complexes; Photosystem II Protein Complex; Spectrometry, Fluorescence; Thylakoids; Xanthophylls

2015
The diadinoxanthin diatoxanthin cycle induces structural rearrangements of the isolated FCP antenna complexes of the pennate diatom Phaeodactylum tricornutum.
    Plant physiology and biochemistry : PPB, 2015, Volume: 96

    The study investigated the influence of the xanthophyll cycle pigments diadinoxanthin (DD) and diatoxanthin (Dt) on the spectroscopic characteristics, structure and protein composition of isolated fucoxanthin chlorophyll protein (FCP) complexes of the pennate diatom Phaeodactylum tricornutum. 77 K fluorescence emission spectra revealed that Dt-containing FCP complexes showed a characteristic long wavelength fluorescence emission at 700 nm at a pH-value of 5 whereas DD-enriched FCPs retained the typical 680 nm fluorescence emission maximum of isolated FCPs. The 700 nm emission in Dt-containing FCPs indicates an aggregation of antenna complexes and is a typical feature of the quenching site Q1 in recent models for non-photochemical fluorescence quenching (NPQ). A comparable long-wavelength fluorescence emission was found in FCP complexes prepared with either triton X-100 or n-dodecyl β-D-maltoside as detergent. A treatment of the FCP complexes at low pH-values in the presence of a high concentration of Mg(2+) ions showed that the extent of FCP aggregation which leads to the 700 nm fluorescence emission is different from the macro-aggregation of antenna complexes in higher plants. Protein analyses by mass spectrometry showed that the protein composition of the DD- and Dt-enriched FCP complexes was comparable. However, the Lhcf6 and Lhcr1 polypeptides were only found in Dt-enriched FCPs isolated with dodecyl maltoside whereas the Lhcf17 protein was only detected in DD-enriched FCPs prepared with triton. With respect to low pH-induced antenna aggregation it is important that the Lhcx1 protein was found in both DD- and Dt-enriched FCPs, albeit with only two peptides with confident scores.

    Topics: Chromatography, High Pressure Liquid; Diatoms; Light-Harvesting Protein Complexes; Pigments, Biological; Spectrometry, Fluorescence; Spectrometry, Mass, Electrospray Ionization; Xanthophylls

2015
Probing the carotenoid content of intact Cyclotella cells by resonance Raman spectroscopy.
    Photosynthesis research, 2014, Volume: 119, Issue:3

    In this study, we demonstrate the selective in vivo detection of diadinoxanthin (DD) and diatoxanthin (DT) in intact Cyclotella cells using resonance Raman spectroscopy. In these cells, we were able to assess both the content of DD and DT carotenoids relative to chlorophyll and their conformation. In addition, the sensitivity and selectivity of the technique allow us to discriminate between different pools of DD on a structural basis, and to follow their fate as a function of the illumination conditions. We report that the additional DD observed when cells are grown in high-light conditions adopts a more twisted conformation than the lower levels of DD present when the cells are grown in low-light (LL) conditions. Thus, we conclude that this pool of DD is more tightly bound to a protein-binding site, which must differ from the one occupied by the DD present in LL conditions.

    Topics: Binding Sites; Carotenoids; Chromatography, High Pressure Liquid; Diatoms; Light; Spectrum Analysis, Raman; Xanthophylls

2014
Spectral radiation dependent photoprotective mechanism in the diatom Pseudo-nitzschia multistriata.
    PloS one, 2014, Volume: 9, Issue:1

    Phytoplankton, such as diatoms, experience great variations of photon flux density (PFD) and light spectrum along the marine water column. Diatoms have developed some rapidly-regulated photoprotective mechanisms, such as the xanthophyll cycle activation (XC) and the non-photochemical chlorophyll fluorescence quenching (NPQ), to protect themselves from photooxidative damages caused by excess PFD. In this study, we investigate the role of blue fluence rate in combination with red radiation in shaping photoacclimative and protective responses in the coastal diatom Pseudo-nitzschia multistriata. This diatom was acclimated to four spectral light conditions (blue, red, blue-red, blue-red-green), each of them provided with low and high PFD. Our results reveal that the increase in the XC pool size and the amplitude of NPQ is determined by the blue fluence rate experienced by cells, while cells require sensing red radiation to allow the development of these processes. Variations in the light spectrum and in the blue versus red radiation modulate either the photoprotective capacity, such as the activation of the diadinoxanthin-diatoxanthin xanthophyll cycle, the diadinoxanthin de-epoxidation rate and the capacity of non-photochemical quenching, or the pigment composition of this diatom. We propose that spectral composition of light has a key role on the ability of diatoms to finely balance light harvesting and photoprotective capacity.

    Topics: Acclimatization; Chlorophyll; Diatoms; Photons; Photosynthesis; Phytoplankton; Radiation; Xanthophylls

2014
The response of the scleractinian coral Turbinaria reniformis to thermal stress depends on the nitrogen status of the coral holobiont.
    The Journal of experimental biology, 2013, Jul-15, Volume: 216, Issue:Pt 14

    The physiological response of the scleractinian coral Turbinaria reniformis to ammonium enrichment (3 μmol l(-1)) was examined at 26°C as well as during a 7 day increase in temperature to 31°C (thermal stress). At 26°C, ammonium supplementation had little effect on the coral physiology. It induced a decrease in symbiont density, compensated by an increase in chlorophyll content per symbiont cell. Organic carbon release was reduced, likely because of a better utilization of the photosynthesized carbon (i.e. incorporation into proteins, kept in the coral tissue). The δ(15)N signatures of the ammonium-enriched symbionts and host tissue were also significantly decreased, by 4 and 2‰, respectively, compared with the non-enriched conditions, suggesting a significant uptake of inorganic nitrogen by the holobiont. Under thermal stress, coral colonies that were not nitrogen enriched experienced a drastic decrease in photosynthetic and photoprotective pigments (chlorophyll a, β-carotene, diadinoxanthin, diatoxanthin and peridinin), followed by a decrease in the rates of photosynthesis and calcification. Organic carbon release was not affected by this thermal stress. Conversely, nitrogen-enriched corals showed an increase in their pigment concentrations, and maintained rates of photosynthesis and calcification at ca. 60% and 100% of those measured under control conditions, respectively. However, these corals lost more organic carbon into the environment. Overall, these results indicate that inorganic nitrogen availability can be important to determining the resilience of some scleractinian coral species to thermal stress, and can have a function equivalent to that of heterotrophic feeding concerning the maintenance of coral metabolism under stress conditions.

    Topics: Ammonium Compounds; Analysis of Variance; Animals; Anthozoa; beta Carotene; Calcification, Physiologic; Carotenoids; Chlorophyll; Chlorophyll A; Dinoflagellida; Fluorescence; Hot Temperature; Indian Ocean; Nitrogen; Photosynthesis; Stress, Physiological; Symbiosis; Xanthophylls

2013
Properties of photosystem I antenna protein complexes of the diatom Cyclotella meneghiniana.
    Journal of experimental botany, 2012, Volume: 63, Issue:10

    Analysis of photosystem I (PSI) complexes from Cyclotella meneghiniana cultured under different growth conditions led to the identification of three groups of antenna proteins, having molecular weights of around 19, 18, and 17 kDa. The 19-kDa proteins have earlier been demonstrated to be more peripherally bound to PSI, and their amount in the PSI complexes was significantly reduced when the iron supply in the growth medium was lowered. This polypeptide was almost missing, and thus the total amount of fucoxanthin-chlorophyll proteins (Fcps) bound to PSI was reduced as well. When treating cells with high light in addition, no further changes in antenna polypeptide composition were detected. Xanthophyll cycle pigments were found to be bound to all Fcps of PSI. However, PSI of high light cultures had a significantly higher diatoxanthin to diadinoxanthin ratio, which is assumed to protect against a surplus of excitation energy. PSI complexes from the double-stressed cultures (high light plus reduced iron supply) were slightly more sensitive against destruction by the detergent treatment. This could be seen as a higher 674-nm emission at 77 K in comparison to the PSI complexes isolated from other growth conditions. Two major emission bands of the Fcps bound to PSI at 77 K could be identified, whereby chlorophyll a fluorescing at 697 nm was more strongly coupled to the PSI core than those fluorescing at 685 nm. Thus, the build up of the PSI antenna of several Fcp components enables variable reactions to several stress factors commonly experienced by the diatoms in vivo, in particular diatoxanthin enrichment under high light and reduction of antenna size under reduced iron conditions.

    Topics: Diatoms; Light; Molecular Weight; Photosystem I Protein Complex; Xanthophylls

2012
Role of carotenoids in light-harvesting processes in an antenna protein from the chromophyte Xanthonema debile.
    The journal of physical chemistry. B, 2012, Aug-02, Volume: 116, Issue:30

    Chromophytes are an important group of microorganisms that contribute significantly to the carbon cycle on Earth. Their photosynthetic capacity depends on efficiency of the light-harvesting system that differs in pigment composition from that of green plants and other groups of algae. Here we employ femtosecond transient absorption spectroscopy to study energy transfer pathways in the main light-harvesting complex of Xanthonema debile, denoted XLH, which contains four carotenoids--diadinoxanthin, heteroxanthin, diatoxanthin, and vaucheriaxanthin--and Chl-a. Overall carotenoid-to-chlorophyll energy transfer efficiency is about 60%, but energy transfer pathways are excitation wavelength dependent. Energy transfer from the carotenoid S(2) state is active after excitation at both 490 nm (maximum of carotenoid absorption) and 510 nm (red edge of carotenoid absorption), but this channel is significantly more efficient after 510 nm excitation. Concerning the energy transfer pathway from the S(1) state, XLH contains two groups of carotenoids: those that have the S(1) route active (~25%) and those having the S(1) pathway silent. For a fraction of carotenoids that transfer energy via the S(1) channel, energy transfer is observed after both excitation wavelengths, though energy transfer times are different, yielding 3.4 ps (490 nm excitation) and 1.5 ps (510 nm excitation). This corresponds to efficiencies of the S(1) channel of ~85% that is rather unusual for a donor-acceptor pair consisting of a noncarbonyl carotenoid and Chl-a. Moreover, major carotenoids in XLH, diadinoxanthin and diatoxanthin, have their S(1) energies in solution lower than the energy of the acceptor state, Q(y) state of Chl-a. Thus, binding of these carotenoids to XLH must tune their S(1) energy to allow for efficient energy transfer. Besides the light-harvesting function, carotenoids in XLH also have photoprotective role; they quench Chl-a triplets via triplet-triplet energy transfer from Chl-a to carotenoid.

    Topics: Carotenoids; Chlorophyll; Chlorophyta; Energy Transfer; Light-Harvesting Protein Complexes; Xanthophylls

2012
Photosystem II photoinactivation, repair, and protection in marine centric diatoms.
    Plant physiology, 2012, Volume: 160, Issue:1

    Diatoms are important contributors to aquatic primary production, and can dominate phytoplankton communities under variable light regimes. We grew two marine diatoms, the small Thalassiosira pseudonana and the large Coscinodiscus radiatus, across a range of temperatures and treated them with a light challenge to understand their exploitation of variable light environments. In the smaller T. pseudonana, photosystem II (PSII) photoinactivation outran the clearance of PSII protein subunits, particularly in cells grown at sub- or supraoptimal temperatures. In turn the absorption cross section serving PSII photochemistry was down-regulated in T. pseudonana through induction of a sustained phase of nonphotochemical quenching that relaxed only slowly over 30 min of subsequent low-light incubation. In contrast, in the larger diatom C. radiatus, PSII subunit turnover was sufficient to counteract a lower intrinsic susceptibility to photoinactivation, and C. radiatus thus did not need to induce sustained nonphotochemical quenching under the high-light treatment. T. pseudonana thus incurs an opportunity cost of sustained photosynthetic down-regulation after the end of an upward light shift, whereas the larger C. radiatus can maintain a balanced PSII repair cycle under comparable conditions.

    Topics: Absorption; Culture Techniques; Diatoms; Light; Oxidation-Reduction; Photochemical Processes; Photosynthesis; Photosystem II Protein Complex; Protein Subunits; Species Specificity; Temperature; Time Factors; Xanthophylls

2012
Dynamic response of the transcriptome of a psychrophilic diatom, Chaetoceros neogracile, to high irradiance.
    Planta, 2010, Volume: 231, Issue:2

    Large-scale RNA profiling revealed that high irradiance differentially regulated 577 out of 1,439 non-redundant genes of the Antarctic marine diatom Chaetoceros neogracile, represented on a custom cDNA chip, during 6 h of treatment. Among genes that were up- or down-regulated more than twofold within 30 min of treatment (310/1,439), about half displayed an acclimatory response during 6 h under high light. Expression of the remaining non-acclimatory genes also rapidly returned to initial levels within 30 min following a shift to low irradiance. High light altered expression of most of the photosynthesis genes (48/70), in contrast to genes in other functional categories. In addition, opposite response patterns were provoked in genes encoding fucoxanthin chlorophyll a/c binding protein (FCP), the main component of the diatom light-harvesting complex; high irradiance caused a decrease in expression of most FCP genes, but drove the rapid and specific up-regulation of ten others. C. neogracile responded very promptly to a change in light intensity by rapidly adjusting the transcript levels of FCP genes up-regulated by high light, and these dynamic adjustments coincided well with diatoxanthin (Dtx) levels formed by the xanthophyll cycle under the same conditions. The observation that the non-photochemical quenching (NPQ) capacity of this polar diatom was highly dependent on Dtx, which could bind to FCP and trigger NPQ, suggests that the up-regulated FCP gene products may participate in a photoprotective process as Dtx-binding proteins.

    Topics: Acclimatization; Diatoms; Gene Expression Profiling; Gene Expression Regulation; Light; Light-Harvesting Protein Complexes; Phylogeny; Time Factors; Xanthophylls

2010
A new multicomponent NPQ mechanism in the diatom Cyclotella meneghiniana.
    Plant & cell physiology, 2008, Volume: 49, Issue:8

    In the present study we report that in the diatom Cyclotella meneghiniana the diatoxanthin-dependent non-photochemical quenching of chlorophyll fluorescence (NPQ) is heterogeneous and consists of three different components. (i) A transient NPQ component that generates immediately upon illumination, depends on the transthylakoid proton gradient as well as on the light intensity, and is modulated by the initial diatoxanthin content of the cells. It is located in the antenna complexes of C. meneghiniana and is comparable with the transient NPQ observed in vascular plants. (ii) A steady-state NPQ component is observed during later stages of the high-light illumination and depends on the diatoxanthin content formed by the light-activated diadinoxanthin cycle. (iii) A fast relaxing NPQ component is seen upon a transition of high-light-illuminated cells to complete darkness. This component relaxes within a time frame of tens of seconds and its extent is correlated with the amount of diatoxanthin formed during the phase of actinic illumination. It cannot be observed in dithiothreitol-treated cells where the de-epoxidation of diadinoxanthin to diatoxanthin is suppressed. The fast relaxing component can be interpreted as a relaxation of part of the steady-state NPQ. The different diatoxanthin-dependent components are characterized by different quenching efficiencies of diatoxanthin. Diatoxanthin involved in the transient NPQ exhibits a 2-fold higher quenching efficiency compared with diatoxanthin participating in the steady-state NPQ. It is proposed that the different quenching efficiencies of diatoxanthin are caused by the existence of different diatoxanthin pools within the antenna system of C. meneghiniana.

    Topics: beta Carotene; Chlorophyll; Diatoms; Fluorescence; Light; Photosynthesis; Signal Transduction; Time Factors; Xanthophylls

2008
Subunit composition and pigmentation of fucoxanthin-chlorophyll proteins in diatoms: evidence for a subunit involved in diadinoxanthin and diatoxanthin binding.
    Biochemistry, 2006, Oct-31, Volume: 45, Issue:43

    Two different fucoxanthin-chlorophyll protein complexes (FCP) were purified from the centric diatom Cyclotella meneghiniana and characterized with regard to their polypeptide and pigment composition. Whereas the oligomeric FCPb complex is most probably composed of fcp5 gene products, the trimeric FCPa has subunits encoded by fcp1-3 and fcp6/7. The amount of the latter polypeptide is enhanced when FCPa is isolated from algae grown under HL conditions. This increase in Fcp6/7 polypeptides is accompanied by an increase in the pool of xanthophyll cycle pigments, diadinoxanthin and diatoxanthin, and a concomitant decrease in fucoxanthin content. In addition, the de-epoxidation ratio, i.e., the amount of diatoxanthin in relation to the pool of xanthophyll cycle pigments, is increased by a factor of 2. With regard to fluorescence yield, HL FCPa was quenched in comparison to LL FCPa. This is in accordance with the larger amount of diatoxanthin that is bound, which is supposed to act as a quencher like zeaxanthin in higher plants. Thus, we conclude that the enhanced content of diatoxanthin in FCPa plays a protective role, which is paralleled by a weakened light harvesting function due to a smaller amount of fucoxanthin.

    Topics: Blotting, Western; Chlorophyll; Diatoms; Light-Harvesting Protein Complexes; Spectrometry, Fluorescence; Xanthophylls

2006
The impact of coral bleaching on the pigment profile of the symbiotic alga, Symbiodinium.
    Plant, cell & environment, 2006, Volume: 29, Issue:12

    Bleaching of corals by loss of symbiotic dinoflagellate algae and/or photosynthetic pigments is commonly triggered by elevated temperatures coupled with high irradiance, and is a first-order threat to coral reef communities. In this study, a high-resolution high-performance liquid chromatography method integrated with mass spectrometry was applied to obtain the first definitive identification of chlorophyll and carotenoid pigments of three clades of symbiotic dinoflagellate algae (Symbiodinium) in corals, and their response to experimentally elevated temperature and irradiance. The carotenoids peridinin, dinoxanthin, diadinoxanthin (Dn), diatoxanthin (Dt) and beta-carotene were detected, together with chlorophylls a and c2, and phaeophytin a, in all three algal clades in unstressed corals. On exposure to elevated temperature and irradiance, three coral species (Montastrea franksi and Favia fragum with clade B algae, and Montastrea cavernosa with clade C) bleached by loss of 50-80% of their algal cells, with no significant impact to chlorophyll a or c2, or peridinin in retained algal cells. One species (Agaricia sp. with clade C) showed no significant reduction in algal cells at elevated temperature and irradiance, but lost substantial amounts of chlorophyll a and carotenoid pigments, presumably through photo-oxidative processes. Two coral species (Porites astreoides and Porites porites both bearing clade A algae) did not bleach. The impact of elevated temperature and irradiance on the levels of the photoprotective xanthophylls (Dn + Dt) and beta-carotene varied among the corals, both in pool size and xanthophyll cycling, and was not correlated to coral bleaching resistance.

    Topics: Animals; Anthozoa; Cell Count; Chlorophyll; Chromatography, High Pressure Liquid; Eukaryota; Light; Mass Spectrometry; Phylogeny; Pigments, Biological; Symbiosis; Temperature; Xanthophylls

2006
Enrichment of the light-harvesting complex in diadinoxanthin and implications for the nonphotochemical fluorescence quenching in diatoms.
    Biochemistry, 2003, May-20, Volume: 42, Issue:19

    The pigment composition of diatoms differs from that of green algae and plants. Diatoms contain chlorophyll (Chl(1)) c, fucoxanthin, and diadinoxanthin (DD). An intermittent light regime during growth induced a large increase in the DD content in the marine planktonic diatom Phaeodactylum tricornutum. Light-harvesting complex containing fucoxanthin (LHCF) subunits were purified on a sucrose gradient after treatment of thylakoid membranes with a mild detergent. DD was found in all the LHCF fractions: a "major" composite LHCF fraction and the two fractions where some LHCF was associated with photosystem centers. For cells enriched in DD, most of the additional DD molecules were bound to the major LHCF fraction. The DD enrichment of the major LHCF fraction was accompanied by a decrease in the fucoxanthin to Chl a ratio. Either some fucoxanthin molecules were replaced by DD or there could be a relative enrichment of subunits rich in DD at the expense of fucoxanthin/Chl c rich subunits. Under high light illumination, a higher degree of de-epoxidation of DD into DT was observed for the major LHCF of cells enriched in DD. This fraction has the higher DD content and the higher degree of de-epoxidation. These results show that the distal antennae, probably mostly isolated as the major LHCF fraction, play a crucial role in the formation of NPQ, its amplitude depending on the amount of DD bound and on the degree of de-epoxidation (Lavaud et al. (2002) Plant Physiol. 129, 1398-1406).

    Topics: Darkness; Diatoms; Fluorescence; Photochemistry; Photoperiod; Photosynthesis; Spectrophotometry; Xanthophylls

2003
In diatoms, a transthylakoid proton gradient alone is not sufficient to induce a non-photochemical fluorescence quenching.
    FEBS letters, 2002, Jul-17, Volume: 523, Issue:1-3

    Non-photochemical fluorescence quenching (NPQ) in diatoms is associated with a xanthophyll cycle involving diadinoxanthin (DD) and its de-epoxidized form, diatoxanthin (DT). In higher plants, an obligatory role of de-epoxidized xanthophylls in NPQ remains controversial and the presence of a transthylakoid proton gradient (DeltapH) alone may induce NPQ. We used inhibitors to alter the amplitude of DeltapH and/or DD de-epoxidation, and coupled NPQ. No DeltapH-dependent quenching was detected in the absence of DT. In diatoms, both DeltapH and DT are required for NPQ. The binding of DT to protonated antenna sites could be obligatory for energy dissipation.

    Topics: Chlorophyll; Diatoms; Fluorescence; Photochemistry; Proton Pumps; Thylakoids; Xanthophylls

2002
Supplementary ultraviolet-B radiation induces a rapid reversal of the diadinoxanthin cycle in the strong light-exposed diatom Phaeodactylum tricornutum.
    Plant physiology, 2002, Volume: 130, Issue:3

    A treatment of the diatom Phaeodactylum tricornutum with high light (HL) in the visible range led to the conversion of diadinoxanthin (Dd) to diatoxanthin (Dt). In a following treatment with HL plus supplementary ultraviolet (UV)-B, the Dt was rapidly epoxidized to Dd. Photosynthesis of the cells was inhibited under HL + UV-B. This is accounted for by direct damage by UV-B and damage because of the UV-B-induced reversal of the Dd cycle and the associated loss of photoprotection. The reversal of the Dd cycle by UV-B was faster in the presence of dithiothreitol, an inhibitor of the Dd de-epoxidase. Our results imply that the reversal of the Dd cycle by HL + UV-B was caused by an increase in the rate of gross Dt epoxidation, whereas the de-epoxidation of Dd was unaffected by UV-B. This is further supported by our finding that the in vitro de-epoxidation activity and the affinity toward the cosubstrate ascorbic acid of the Dd de-epoxidase were both unaffected by UV-B pretreatment of intact cells. We provide evidence that Dt epoxidation is normally down-regulated by a high pH gradient under HL. It is proposed that supplementary UV-B affected the pH gradient across the thylakoid membrane, which disrupted the down-regulation of Dt epoxidation and led to the observed increase in the rate of Dt epoxidation.

    Topics: Adaptation, Physiological; Darkness; Diatoms; Dithiothreitol; Hydrogen-Ion Concentration; Light; Oxidoreductases; Signal Transduction; Thylakoids; Ultraviolet Rays; Xanthophylls

2002
Cadmium inhibits epoxidation of diatoxanthin to diadinoxanthin in the xanthophyll cycle of the marine diatom Phaeodactylum tricornutum.
    FEBS letters, 2001, Nov-09, Volume: 508, Issue:1

    Cd has pleiotropic effects on plant physiology and in particular on photosynthesis. It has not been established yet if Cd alters the functioning of the xanthophyll cycle. To answer this question, an exponentially growing culture of the marine diatom Phaeodactylum tricornutum was incubated with Cd (20 mg/l) for 24 h and irradiated with a light activating the xanthophyll cycle, which in diatoms, consists of the reversible deepoxidation of diadinoxanthin to diatoxanthin. The measurements show that the deepoxidation step is not influenced by Cd. In contrast, the Cd concentration used sharply inhibits the epoxidation of diatoxanthin to diadinoxanthin.

    Topics: Cadmium; Chlorophyll; Diatoms; Light; Photosynthesis; Spectrometry, Fluorescence; Xanthophylls

2001
The lifetimes and energies of the first excited singlet states of diadinoxanthin and diatoxanthin: the role of these molecules in excess energy dissipation in algae.
    Biochimica et biophysica acta, 1996, Dec-18, Volume: 1277, Issue:3

    The lifetimes of the first excited singlet states (2(1)A(g)) of diadinoxanthin and diatoxanthin, carotenoids involved in the xanthophyll cycle in some genera of algae, have been measured by femtosecond time-resolved optical spectroscopy to be 22.8 +/- 0.1 ps and 13.3 +/- 0.1 ps, respectively. Using the energy gap law for radiationless transitions set forth by Englman and Jortner (Mol. Phys. 18 (1970) 145-164), these lifetimes correspond to S1 excited state energies of 15210 cm-1 for diadinoxanthin and 14620 cm-1 for diatoxanthin. The lowest excited singlet state energy of Chl a has an energy of 14700 cm-1. The fact that the S1 state energy of diadinoxanthin lies above that of Chl a, whereas the S1 state energy of diatoxanthin lies below that of Chl a, suggests that the xanthophyll cycle involving the enzymatic interconversion of diadinoxanthin and diatoxanthin may play a role in regulating energy flow between these molecules and Chl a in many species of algae, essentially fulfilling a role identical to that proposed for violaxanthin and zeaxanthin in higher plants and green algae (Frank et al. (1994) Photosyn. Res. 41, 389-395).

    Topics: Carotenoids; Chlorophyll; Chlorophyll A; Energy Metabolism; Eukaryota; Hydrogen-Ion Concentration; Spectrometry, Fluorescence; Spectrophotometry; Thermodynamics; Xanthophylls

1996