diacetylmonoxime has been researched along with rhod-2* in 2 studies
2 other study(ies) available for diacetylmonoxime and rhod-2
Article | Year |
---|---|
Effects of mechanical uncouplers, diacetyl monoxime, and cytochalasin-D on the electrophysiology of perfused mouse hearts.
Chemical uncouplers diacetyl monoxime (DAM) and cytochalasin D (cyto-D) are used to abolish cardiac contractions in optical studies, yet alter intracellular Ca(2+) concentration ([Ca(2+)](i)) handling and vulnerability to arrhythmias in a species-dependent manner. The effects of uncouplers were investigated in perfused mouse hearts labeled with rhod-2/AM or 4-[beta-[2-(di-n-butylamino)-6-naphthyl]vinyl]pyridinium (di-4-ANEPPS) to map [Ca(2+)](i) transients (emission wavelength = 585 +/- 20 nm) and action potentials (APs) (emission wavelength > 610 nm; excitation wavelength = 530 +/- 20 nm). Confocal images showed that rhod-2 is primarily in the cytosol. DAM (15 mM) and cyto-D (5 microM) increased AP durations (APD(75) = 20.0 +/- 3 to 46.6 +/- 5 ms and 39.9 +/- 8 ms, respectively, n = 4) and refractory periods (45.14 +/- 12.1 to 82.5 +/- 3.5 ms and 78 +/- 4.24 ms, respectively). Cyto-D reduced conduction velocity by 20% within 5 min and DAM by 10% gradually in 1 h (n = 5 each). Uncouplers did not alter the direction and gradient of repolarization, which progressed from apex to base in 15 +/- 3 ms. Peak systolic [Ca(2+)](i) increased with cyto-D from 743 +/- 47 (n = 8) to 944 +/- 17 nM (n = 3, P = 0.01) but decreased with DAM to 398 +/- 44 nM (n = 3, P < 0.01). Diastolic [Ca(2+)](i) was higher with cyto-D (544 +/- 80 nM, n = 3) and lower with DAM (224 +/- 31, n = 3) compared with controls (257 +/- 30 nM, n = 3). DAM prolonged [Ca(2+)](i) transients at 75% recovery (54.3 +/- 5 to 83.6 +/- 1.9 ms), whereas cyto-D had no effect (58.6 +/- 1.2 ms; n = 3). Burst pacing routinely elicited long-lasting ventricular tachycardia but not fibrillation. Uncouplers flattened the slope of AP restitution kinetic curves and blocked ventricular tachycardia induced by burst pacing. Topics: Action Potentials; Animals; Arrhythmias, Cardiac; Calcium; Cytochalasin D; Diacetyl; Electrophysiology; Fluorescent Dyes; Heart; Heterocyclic Compounds, 3-Ring; In Vitro Techniques; Kinetics; Mice; Mice, Inbred Strains; Myocardial Contraction; Nucleic Acid Synthesis Inhibitors; Organ Preservation Solutions; Perfusion | 2004 |
Two-photon molecular excitation imaging of Ca2+ transients in Langendorff-perfused mouse hearts.
The ability to image calcium signals at subcellular levels within the intact depolarizing heart could provide valuable information toward a more integrated understanding of cardiac function. Accordingly, a system combining two-photon excitation with laser-scanning microscopy was developed to monitor electrically evoked [Ca(2+)](i) transients in individual cardiomyocytes within noncontracting Langendorff-perfused mouse hearts. [Ca(2+)](i) transients were recorded at depths =100 microm from the epicardial surface with the fluorescent indicators rhod-2 or fura-2 in the presence of the excitation-contraction uncoupler cytochalasin D. Evoked [Ca(2+)](i) transients were highly synchronized among neighboring cardiomyocytes. At 1 Hz, the times from 90 to 50% (t(90-50%)) and from 50 to 10% (t(50-10%)) of the peak [Ca(2+)](i) were (means +/- SE) 73 +/- 4 and 126 +/- 10 ms, respectively, and at 2 Hz, 62 +/- 3 and 94 +/- 6 ms (n = 19, P < 0.05 vs. 1 Hz) in rhod-2-loaded cardiomyocytes. [Ca(2+)](i) decay was markedly slower in fura-2-loaded hearts (t(90-50%) at 1 Hz, 128 +/- 9 ms and at 2 Hz, 88 +/- 5 ms; t(50-10%) at 1 Hz, 214 +/- 18 ms and at 2 Hz, 163 +/- 7 ms; n = 19, P < 0.05 vs. rhod-2). Fura-2-induced deceleration of [Ca(2+)](i) decline resulted from increased cytosolic Ca(2+) buffering, because the kinetics of rhod-2 decay resembled those obtained with fura-2 after incorporation of the Ca(2+) chelator BAPTA. Propagating calcium waves and [Ca(2+)](i) amplitude alternans were readily detected in paced hearts. This approach should be of general utility to monitor the consequences of genetic and/or functional heterogeneity in cellular calcium signaling within whole mouse hearts at tissue depths that have been inaccessible to single-photon imaging. Topics: Animals; Calcium; Calcium Signaling; Chelating Agents; Cytochalasin D; Diacetyl; Diagnostic Imaging; Egtazic Acid; Enzyme Inhibitors; Fluorescent Dyes; Fura-2; Heart; Heterocyclic Compounds, 3-Ring; In Vitro Techniques; Mice; Mice, Inbred Strains; Mice, Transgenic; Muscle Cells; Muscle Contraction; Nucleic Acid Synthesis Inhibitors; Perfusion; Photons; Transforming Growth Factor beta; Transforming Growth Factor beta1 | 2003 |