dextromethorphan has been researched along with epigallocatechin-gallate* in 1 studies
1 other study(ies) available for dextromethorphan and epigallocatechin-gallate
Article | Year |
---|---|
Green tea (Camellia sinensis) extract does not alter cytochrome p450 3A4 or 2D6 activity in healthy volunteers.
Green tea extract is a widely used dietary supplement. The objective of this study was to assess the influence of a decaffeinated green tea (DGT; Camellia sinensis) extract on the activity of the drug-metabolizing enzymes cytochrome P-450 2D6 and 3A4. Probe drugs dextromethorphan (30 mg, CYP2D6 activity) and alprazolam (ALPZ; 2 mg, CYP3A4 activity) were administered orally to healthy volunteers (n = 11) at baseline, and again after treatment with four DGT capsules/day for 14 days. Each DGT capsule contained 211 +/- 25 mg of green tea catechins and <1 mg of caffeine. Dextromethorphan metabolic ratios (DMRs) and alprazolam pharmacokinetics were determined at baseline and after DGT treatment. There were no significant differences in ALPZ pharmacokinetics at baseline and after DGT treatment (all P values >/= 0.05; maximum concentration in plasma, 33 +/- 8 versus 34 +/- 13 ng/ml; time to reach maximum concentration in plasma, 1.4 +/- 1.2 versus 1.4 +/- 1.2 h; area under the plasma concentration versus time curve, 480 +/- 119 versus 510 +/- 107 h. ng. ml(-1); half-life of elimination, 12.3 +/- 1.7 versus 13.1 +/- 3.4 h). The DMR was 0.053 +/- 0.045 at baseline and 0.041 +/- 0.032 after DGT supplementation (P > 0.05). The plasma concentration of the green tea flavonoid, (-)-epigallocatechin gallate, reached 1.3 +/- 1.8 microM 2 h after DGT treatment. Our results indicate that DGT is unlikely to alter the disposition of medications primarily dependent on the CYP2D6 or CYP3A4 pathways of metabolism. Topics: Administration, Oral; Adult; Alprazolam; Camellia sinensis; Capsules; Catechin; Cytochrome P-450 CYP2D6; Cytochrome P-450 CYP3A; Cytochrome P-450 Enzyme System; Dextromethorphan; Dietary Supplements; Drug Administration Schedule; Female; Half-Life; Humans; Male; Plant Extracts; Plant Leaves; Time Factors | 2004 |