devazepide has been researched along with luzindole* in 2 studies
2 other study(ies) available for devazepide and luzindole
Article | Year |
---|---|
Apelin stimulation of duodenal bicarbonate secretion: feeding-dependent and mediated via apelin-induced release of enteric cholecystokinin.
Apelin peptides are the endogenous ligand of the G protein-coupled receptor APJ. Proposed actions include involvement in control of cardiovascular functions, appetite and body metabolism. We have investigated the effects of apelin peptides on duodenal bicarbonate secretion in vivo and the release of cholecystokinin (CCK) from acutely isolated mucosal cells and the neuroendocrine cell line STC-1.. Lewis × Dark Agouti rats had free access to water and, unless fasted overnight, free access to food. A segment of proximal duodenum was cannulated in situ in anaesthetized animals. Mucosal bicarbonate secretion was titrated (pH stat) and apelin was administered to the duodenum by close intra-arterial infusion. Total RNA was extracted from mucosal specimens, reverse transcripted to cDNA and the expression of the APJ receptor measured by quantitative real-time PCR. Apelin-induced release of CCK was measured using (1) cells prepared from proximal small intestine and (2) STC-1 cells.. Even the lowest dose of apelin-13 (6 pmol kg⁻¹ h⁻¹) caused a significant rise in bicarbonate secretion. Stimulation occurred only in continuously fed animals and even a 100-fold greater dose (600 pmol kg⁻¹ h⁻¹) of apelin was without effect in overnight food-deprived animals. Fasting also induced an eightfold decrease in the expression of APJ receptor mRNA. Apelin induced significant release of CCK from both mucosal and STC-1 cells, and the CCK(A) receptor antagonist devazepide abolished bicarbonate secretory responses to apelin.. Apelin-induced stimulation of duodenal electrolyte secretion is feeding-dependent and mediated by local mucosal release of CCK. Topics: Animals; Apelin Receptors; Atropine; Bicarbonates; Cell Line; Cholecystokinin; Devazepide; Dinoprostone; Duodenum; Eating; Food Deprivation; Humans; Infusions, Intra-Arterial; Intercellular Signaling Peptides and Proteins; Intestinal Mucosa; Male; Parasympatholytics; Rats; Rats, Inbred Lew; Receptors, G-Protein-Coupled; Tryptamines | 2011 |
Melatonin and its precursor, L-tryptophan: influence on pancreatic amylase secretion in vivo and in vitro.
Melatonin, considered as a main pineal product, may be also synthetized in the gastrointestinal tract from L-tryptophan. Melatonin has been recently shown to affect insulin release and its receptors have been characterized in the pancreas however, the effects of melatonin on the pancreatic enzyme secretion have not been examined. The aim of this study was to investigate the effects of melatonin or L-tryptophan on amylase secretion in vivo in anaesthetized rats with pancreato-biliary fistulas, and in vitro using isolated pancreatic acini. Melatonin (1, 5 or 25 mg/kg) or L-tryptophan (10, 50 or 250 mg/kg) given to the rats as a intraperitoneal (i.p.) bolus injection produced significant and dose-dependent increases in pancreatic amylase secretion under basal conditions or following stimulation of enzyme secretion by diversion of bile-pancreatic juice. This was accompanied by a dose-dependent rise in melatonin plasma level. Stimulation of pancreatic enzyme secretion caused by melatonin or L-tryptophan was completely abolished by vagotomy, deactivation of sensory nerves with capsaicin or pretreatment with CCK1 receptor antagonists (tarazepide or L-364,718). Pretreatment with luzindole, an antagonist of melatonin MT(2) receptor failed to affect melatonin- or L-tryptophan-induced amylase secretion. Administration of melatonin (1, 5 or 25 mg/kg i.p.) or L-tryptophan (10, 50 or 250 mg/kg i.p.) to the rats resulted in the dose-dependent increase of cholecystokinin (CCK) plasma immunoreactivity. Enzyme secretion from isolated pancreatic acini was not significantly affected by melatonin or L-tryptophan used at doses of 10(-8) -10(-5) M. We conclude that exogenous melatonin, as well as that produced endogenously from L-tryptophan, stimulates pancreatic enzyme secretion in vivo while increasing CCK release. Stimulatory effect of melatonin or L-tryptophan on the exocrine pancreas involves vagal sensory nerves and the CCK release by these substances. Topics: Amylases; Animals; Benzodiazepines; Capsaicin; Cells, Cultured; Cholecystokinin; Devazepide; Dose-Response Relationship, Drug; Melatonin; Pancreas; Pancreatic Juice; Rats; Rats, Wistar; Receptors, Melatonin; Tryptamines; Tryptophan; Vagotomy; Vagus Nerve | 2004 |