devazepide and glucagon-like-peptide-1-(7-36)amide

devazepide has been researched along with glucagon-like-peptide-1-(7-36)amide* in 1 studies

Other Studies

1 other study(ies) available for devazepide and glucagon-like-peptide-1-(7-36)amide

ArticleYear
Glucagon-like peptide-1-(7-36) amide and peptide YY mediate intraduodenal fat-induced inhibition of acid secretion in dogs.
    Endocrinology, 1998, Volume: 139, Issue:1

    Intraduodenal fat inhibits gastric acid secretion via the release of one or more hormonal enterogastrones thought to arise from ileocolonic mucosa. This study determined whether glucagon-like peptide-1 (GLP-1)-(7-36) amide and peptide YY (PYY), colocalized in L cells found in the ileum, mediate intraduodenal fat-induced inhibition of stimulated gastric acid, and evaluated the influence of cholecystokinin-A (CCK-A) receptor activation. Gastric acid secretion in response to duodenal perfusions of 8% peptone was measured in conscious dogs with gastric and duodenal cannulas. Intraduodenal administration of a 10% fat emulsion suppressed gastric acid secretion by 72 +/- 4% (P < 0.001) and increased plasma levels of GLP-1 and PYY by 44 +/- 5 and 46 +/- 4 fmol/ml, respectively (both P < 0.01). Pretreatment with the CCK-A receptor antagonist MK-329 completely reversed the inhibition of gastric acid by fat, suppressed rises of plasma GLP-1 (maximum change, 23 +/- 4 fmol/ml), and reduced plasma PYY responses to baseline. Intravenous infusions of 50 pmol/kg x h GLP-1 or PYY, which reproduced plasma elevations after intraduodenal fat, inhibited gastric acid secretion by 66 +/- 5% and 51 +/- 6%, respectively (both P < 0.01); coinfusions of GLP-1 and PYY abolished gastric acid secretion (P < 0.001) without influencing plasma gastrin or somatostatin. Pretreatment with 1500 pmol/kg x h of the GLP-1 antagonist exendin-(9-39) amide did not alter the magnitude of inhibition of gastric acid caused by exogenous GLP-1. These results indicate that GLP-1 and PYY released by intraduodenal fat, in part through CCK-dependent pathways, are major enterogastrones in dogs. This inhibitory action occurs independent of circulating concentrations of somatostatin and gastrin and appears to involve a GLP-1 receptor distinct from that mediating incretin effects.

    Topics: Animals; Benzodiazepinones; Devazepide; Dogs; Duodenum; Fats; Gastric Acid; Glucagon; Glucagon-Like Peptide 1; Glucagon-Like Peptides; Peptide Fragments; Peptide YY; Protein Precursors

1998