desipramine and reboxetine

desipramine has been researched along with reboxetine in 23 studies

Research

Studies (23)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's1 (4.35)18.2507
2000's14 (60.87)29.6817
2010's6 (26.09)24.3611
2020's2 (8.70)2.80

Authors

AuthorsStudies
Bradshaw, CM; McDade, G; Szabadi, E; Theofilopoulos, N1
Harkin, A; Kelly, JP; Leonard, BE; Morris, K; O'Donnell, JM1
Manier, DH; Shelton, RC; Sulser, F1
Nedergaard, OA; Rasmussen, LE1
Di Chiara, G; Frau, R; Valentini, V1
Grandoso, L; Pineda, J; Ugedo, L1
Cryan, JF; Dalvi, A; Friedland, JC; Hirsch, BR; Jin, SH; Lucki, I; O'Leary, OF; Ouyang, M; Page, ME; Thomas, SA1
Carey, GJ; Gold, LH; Nielsen, DM1
Barbon, A; Barlati, S; D'Urso, G; de Bartolomeis, A; Galietta, A; Gennarelli, M; Giambelli, R; Popoli, M; Racagni, G; Tiraboschi, E1
Cacciapaglia, F; Di Chiara, G; Frau, R; Valentini, V1
Bechtholt, AJ; Crowley, JJ; Hill, TE; Lucki, I; O'Leary, OF; Page, ME1
Fujibayashi, Y; Kanegawa, N; Kawashima, H; Kiyono, Y; Kuge, Y; Saji, H; Sugita, T; Ueda, M1
Donnici, L; Musazzi, L; Popoli, M; Racagni, G; Tardito, D; Tiraboschi, E1
Barrot, M; Doridot, S; Freund-Mercier, MJ; Hein, L; Petit-Demoulière, N; Tessier, LH; Yalcin, I1
Aburakawa, Y; Aizawa, H; Hasebe, N; Kwak, S; Sawada, J; Yamashita, T1
Fisar, Z; Hroudová, J; Raboch, J1
Drugan, RC; Warner, TA1
Chiu, GS; Freund, GG; Gainey, SJ; Kaczmarczyk, MM; Kelley, KW; Kwakwa, KA; Lawson, MA; Machaj, AS; Martin, SA; Meling, DD; Miller, MJ; Newman, AF; Wang, Y; Woods, JA; York, JM1
Barak, Y; Baratz-Goldstein, R; Hostovsky, A; Pick, CG; Rubovitch, V; Schreiber, S; Volis, I1
Cadeddu, R; Carboni, E; Ibba, M; Sadile, A1
Buoli, M; Cahn, W; Serati, M1
Chmielarz, P; Chorązka, K; Kowalska, M; Kuśmierczyk, J; Nalepa, I; Rafa-Zabłocka, K; Satała, G1
Barbui, C; Bighelli, I; Caldwell, DM; Cipriani, A; Davies, SJ; Dawson, S; Dias, S; Furukawa, TA; Guaiana, G; Imai, H; Koesters, M; Meader, N; Pompoli, A; Robertson, L; Tajika, A1

Reviews

2 review(s) available for desipramine and reboxetine

ArticleYear
Alternative pharmacological strategies for adult ADHD treatment: a systematic review.
    Expert review of neurotherapeutics, 2016, Volume: 16, Issue:2

    Topics: Adrenergic alpha-Agonists; Adult; Amphetamines; Antidepressive Agents; Attention Deficit Disorder with Hyperactivity; Benzhydryl Compounds; Bridged Bicyclo Compounds, Heterocyclic; Bupropion; Central Nervous System Stimulants; Desipramine; Dopamine Agents; Droxidopa; Drug Combinations; Duloxetine Hydrochloride; Guanfacine; Histamine Agents; Humans; Lisdexamfetamine Dimesylate; Lithium Compounds; Lobeline; Mecamylamine; Memantine; Modafinil; Morpholines; Nicotinic Agonists; Nicotinic Antagonists; Nomifensine; Paroxetine; Pyridines; Pyridoxine; Pyrrolidonecarboxylic Acid; Quinazolinones; Reboxetine; Venlafaxine Hydrochloride; Wakefulness-Promoting Agents

2016
Pharmacological treatments in panic disorder in adults: a network meta-analysis.
    The Cochrane database of systematic reviews, 2023, 11-28, Volume: 11

    Topics: Adult; Alprazolam; Antidepressive Agents; Antidepressive Agents, Tricyclic; Benzodiazepines; Clomipramine; Clonazepam; Desipramine; Diazepam; Fluoxetine; Humans; Network Meta-Analysis; Panic Disorder; Paroxetine; Reboxetine; Selective Serotonin Reuptake Inhibitors; Serotonin and Noradrenaline Reuptake Inhibitors; Venlafaxine Hydrochloride

2023

Trials

1 trial(s) available for desipramine and reboxetine

ArticleYear
Effects of reboxetine and desipramine on the kinetics of the pupillary light reflex.
    British journal of clinical pharmacology, 1995, Volume: 39, Issue:3

    Topics: Administration, Oral; Adult; Analysis of Variance; Antidepressive Agents; Desipramine; Double-Blind Method; Humans; Iris; Kinetics; Light; Male; Morpholines; Muscarinic Antagonists; Pupil; Reboxetine; Reflex, Pupillary

1995

Other Studies

20 other study(ies) available for desipramine and reboxetine

ArticleYear
Modulation of MK-801-induced behaviour by noradrenergic agents in mice.
    Psychopharmacology, 2001, Mar-01, Volume: 154, Issue:2

    Topics: Adrenergic Agents; Adrenergic alpha-Agonists; Adrenergic alpha-Antagonists; Adrenergic Uptake Inhibitors; Animals; Ataxia; Benzylamines; Clonidine; Desipramine; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; Frontal Lobe; Male; Mesencephalon; Mice; Morpholines; Motor Activity; Norepinephrine; Prazosin; Reboxetine; Stereotyped Behavior

2001
Noradrenergic antidepressants: does chronic treatment increase or decrease nuclear CREB-P?
    Journal of neural transmission (Vienna, Austria : 1996), 2002, Volume: 109, Issue:1

    Topics: Animals; Antidepressive Agents; Antidepressive Agents, Second-Generation; Antidepressive Agents, Tricyclic; Cell Nucleus; Cells, Cultured; Cerebral Cortex; Cyclic AMP Response Element-Binding Protein; Cyclohexanols; Desipramine; Fibroblasts; Humans; Male; Morpholines; Rats; Rats, Sprague-Dawley; Reboxetine; Time Factors; Venlafaxine Hydrochloride

2002
Effects of reboxetine on sympathetic neuroeffector transmission in rabbit carotid artery.
    The Journal of pharmacology and experimental therapeutics, 2003, Volume: 306, Issue:3

    Topics: Animals; Bretylium Compounds; Carotid Arteries; Cocaine; Desipramine; Morpholines; Neuroeffector Junction; Norepinephrine; Pargyline; Potassium; Rabbits; Reboxetine; Sympathetic Nervous System; Tritium

2003
Noradrenaline transporter blockers raise extracellular dopamine in medial prefrontal but not parietal and occipital cortex: differences with mianserin and clozapine.
    Journal of neurochemistry, 2004, Volume: 88, Issue:4

    Topics: Analysis of Variance; Animals; Cerebral Cortex; Clozapine; Desipramine; Dopamine; Dopamine Uptake Inhibitors; Dose-Response Relationship, Drug; Drug Administration Routes; Drug Interactions; Extracellular Space; Male; Mianserin; Microdialysis; Morpholines; Neural Pathways; Norepinephrine Plasma Membrane Transport Proteins; Oxidopamine; Piperazines; Rats; Rats, Sprague-Dawley; Reboxetine; Serotonin Antagonists; Symporters; Time Factors

2004
Comparative study of the effects of desipramine and reboxetine on locus coeruleus neurons in rat brain slices.
    Neuropharmacology, 2004, Volume: 46, Issue:6

    Topics: Animals; Desipramine; Dose-Response Relationship, Drug; In Vitro Techniques; Locus Coeruleus; Male; Morpholines; Neurons; Rats; Rats, Sprague-Dawley; Reboxetine

2004
Norepinephrine-deficient mice lack responses to antidepressant drugs, including selective serotonin reuptake inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2004, May-25, Volume: 101, Issue:21

    Topics: Animals; Antidepressive Agents; Citalopram; Depression; Desipramine; Dopamine beta-Hydroxylase; Droxidopa; Fluoxetine; Gene Deletion; Mice; Morpholines; Norepinephrine; Paroxetine; Reboxetine; Selective Serotonin Reuptake Inhibitors; Sertraline; Tail

2004
Antidepressant-like activity of corticotropin-releasing factor type-1 receptor antagonists in mice.
    European journal of pharmacology, 2004, Sep-19, Volume: 499, Issue:1-2

    Topics: Animals; Antidepressive Agents; Clorgyline; Desipramine; Dose-Response Relationship, Drug; Fluoxetine; Hindlimb Suspension; Male; Mice; Morpholines; Motor Activity; Paroxetine; Pyrazoles; Pyrimidines; Pyrroles; Reboxetine; Receptors, Corticotropin-Releasing Hormone; Selegiline; Swimming; Tranylcypromine; Triazines

2004
Antidepressants activate CaMKII in neuron cell body by Thr286 phosphorylation.
    Neuroreport, 2004, Oct-25, Volume: 15, Issue:15

    Topics: Analysis of Variance; Animals; Antidepressive Agents; Blotting, Western; Calcium; Calcium-Calmodulin-Dependent Protein Kinase Type 2; Calcium-Calmodulin-Dependent Protein Kinases; Cells, Cultured; Desipramine; Dose-Response Relationship, Drug; Drug Administration Schedule; Enzyme Activation; Hippocampus; Immunohistochemistry; In Situ Hybridization; Male; Morpholines; Neurons; Phosphorylation; Rats; Rats, Sprague-Dawley; Reboxetine; RNA, Messenger; Threonine; Time Factors

2004
Differential alpha-mediated inhibition of dopamine and noradrenaline release in the parietal and occipital cortex following noradrenaline transporter blockade.
    Journal of neurochemistry, 2006, Volume: 98, Issue:1

    Topics: Adrenergic Uptake Inhibitors; Analysis of Variance; Animals; Desipramine; Dialysis; Dopamine; Dose-Response Relationship, Drug; Male; Morpholines; Neural Inhibition; Norepinephrine; Occipital Lobe; Parietal Lobe; Rats; Rats, Sprague-Dawley; Reboxetine; Receptors, Adrenergic, alpha-2; Time Factors

2006
Depletion of serotonin and catecholamines block the acute behavioral response to different classes of antidepressant drugs in the mouse tail suspension test.
    Psychopharmacology, 2007, Volume: 192, Issue:3

    Topics: Adrenergic Uptake Inhibitors; Animals; Antidepressive Agents; Behavior, Animal; Brain; Citalopram; Desipramine; Dopamine; Fenclonine; Fluoxetine; Hindlimb Suspension; Male; Mice; Mice, Inbred C57BL; Morpholines; Norepinephrine; Reboxetine; Selective Serotonin Reuptake Inhibitors; Serotonin

2007
Evaluation of radioiodinated (2S,alphaS)-2-(alpha-(2-iodophenoxy)benzyl)morpholine as a radioligand for imaging of norepinephrine transporter in the heart.
    Nuclear medicine and biology, 2008, Volume: 35, Issue:2

    Topics: Animals; Binding, Competitive; Desipramine; Dopamine Plasma Membrane Transport Proteins; Dopamine Uptake Inhibitors; Fluoxetine; Heart; Iodine Radioisotopes; Isotope Labeling; Metabolic Clearance Rate; Morpholines; Norepinephrine; Norepinephrine Plasma Membrane Transport Proteins; Piperazines; Radioligand Assay; Radionuclide Imaging; Radiopharmaceuticals; Rats; Reboxetine; Selective Serotonin Reuptake Inhibitors; Serotonin Plasma Membrane Transport Proteins; Tissue Distribution

2008
Time-dependent biphasic modulation of human BDNF by antidepressants in neuroblastoma cells.
    BMC neuroscience, 2008, Jul-05, Volume: 9

    Topics: Antidepressive Agents; Antidepressive Agents, Second-Generation; Brain-Derived Neurotrophic Factor; Cell Line, Tumor; Desipramine; Fluoxetine; Gene Expression Regulation, Neoplastic; Humans; Morpholines; Neuroblastoma; Reboxetine; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Time Factors

2008
Beta2-adrenoceptors are essential for desipramine, venlafaxine or reboxetine action in neuropathic pain.
    Neurobiology of disease, 2009, Volume: 33, Issue:3

    Topics: Adrenergic alpha-2 Receptor Antagonists; Adrenergic alpha-Antagonists; Adrenergic beta-Antagonists; Amines; Animals; Anticonvulsants; Antidepressive Agents; Cyclohexanecarboxylic Acids; Cyclohexanols; Desipramine; Gabapentin; gamma-Aminobutyric Acid; Male; Mice; Mice, Transgenic; Morpholines; Pain; Pain Threshold; Propanolamines; Reboxetine; Receptors, Adrenergic, alpha-2; Receptors, Adrenergic, beta-2; Sciatic Nerve; Venlafaxine Hydrochloride; Yohimbine

2009
Effects of antidepressants on GluR2 Q/R site-RNA editing in modified HeLa cell line.
    Neuroscience research, 2009, Volume: 64, Issue:3

    Topics: Adenosine Deaminase; Amitriptyline; Amyotrophic Lateral Sclerosis; Antidepressive Agents; Arginine; Cyclopropanes; Desipramine; Fluoxetine; Fluvoxamine; Glutamine; HeLa Cells; Humans; Imipramine; Milnacipran; Morpholines; Paroxetine; Reboxetine; Receptors, AMPA; RNA Editing; RNA-Binding Proteins; RNA, Messenger

2009
Inhibition of monoamine oxidase activity by antidepressants and mood stabilizers.
    Neuro endocrinology letters, 2010, Volume: 31, Issue:5

    Topics: Affect; Amitriptyline; Animals; Antidepressive Agents; Antimanic Agents; Benzodiazepines; Cerebral Cortex; Citalopram; Clorgyline; Cocaine; Cyclohexanols; Desipramine; Fluoxetine; Imipramine; In Vitro Techniques; Iproniazid; Lithium; Mianserin; Mirtazapine; Mitochondria; Moclobemide; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Morpholines; Olanzapine; Pargyline; Reboxetine; Swine; Thiazepines; Valproic Acid; Venlafaxine Hydrochloride

2010
Morris water maze performance deficit produced by intermittent swim stress is partially mediated by norepinephrine.
    Pharmacology, biochemistry, and behavior, 2012, Volume: 101, Issue:1

    Topics: Adrenergic alpha-2 Receptor Agonists; Adrenergic alpha-Agonists; Adrenergic Uptake Inhibitors; Analysis of Variance; Animals; Clonidine; Desipramine; Hippocampus; Learning; Male; Maze Learning; Memory Disorders; Morpholines; Norepinephrine; Psychomotor Performance; Rats; Rats, Sprague-Dawley; Reboxetine; Swimming

2012
Methylphenidate prevents high-fat diet (HFD)-induced learning/memory impairment in juvenile mice.
    Psychoneuroendocrinology, 2013, Volume: 38, Issue:9

    Topics: 3,4-Dihydroxyphenylacetic Acid; Animals; Antidepressive Agents; Anxiety; Blood Glucose; Body Weight; Brain-Derived Neurotrophic Factor; Central Nervous System Stimulants; Cerebral Cortex; Cytokines; Desipramine; Dietary Fats; Dopamine; Exploratory Behavior; Gene Expression Regulation; Hippocampus; Homovanillic Acid; Indoleamine-Pyrrole 2,3,-Dioxygenase; Learning Disabilities; Male; Maze Learning; Memory Disorders; Methylphenidate; Mice; Mice, Knockout; Monoamine Oxidase; Morpholines; Motor Activity; Overnutrition; Physical Endurance; Reboxetine; Receptors, Interleukin-1 Type I; Recognition, Psychology

2013
Interaction of different antidepressants with acute and chronic methadone in mice, and possible clinical implications.
    Journal of molecular neuroscience : MN, 2014, Volume: 52, Issue:4

    Topics: Analgesics, Opioid; Animals; Antidepressive Agents, Second-Generation; Citalopram; Clomipramine; Cyclohexanols; Desipramine; Drug Interactions; Fluvoxamine; Male; Methadone; Mice; Mice, Inbred ICR; Morpholines; Nociception; Pain Threshold; Reboxetine; Selective Serotonin Reuptake Inhibitors; Venlafaxine Hydrochloride

2014
Antidepressants share the ability to increase catecholamine output in the bed nucleus of stria terminalis: a possible role in antidepressant therapy?
    Psychopharmacology, 2014, Volume: 231, Issue:9

    Topics: Animals; Antidepressive Agents; Antidepressive Agents, Second-Generation; Antidepressive Agents, Tricyclic; Bupropion; Citalopram; Desipramine; Dopamine; Dose-Response Relationship, Drug; Fluoxetine; Imipramine; Male; Morpholines; Norepinephrine; Rats, Sprague-Dawley; Reboxetine; Septal Nuclei; Time Factors

2014
Antidepressants Differentially Regulate Intracellular Signaling from α1-Adrenergic Receptor Subtypes In Vitro.
    International journal of molecular sciences, 2021, May-01, Volume: 22, Issue:9

    Topics: Animals; Antidepressive Agents; Citalopram; Depression; Desipramine; Fluoxetine; Gene Expression Regulation; Humans; Imipramine; Mianserin; Mice; PC12 Cells; Rats; Reboxetine; Receptors, Adrenergic, alpha-1; Signal Transduction

2021