desipramine and norfloxacin

desipramine has been researched along with norfloxacin in 22 studies

Research

Studies (22)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's3 (13.64)29.6817
2010's18 (81.82)24.3611
2020's1 (4.55)2.80

Authors

AuthorsStudies
Carrupt, PA; Crivori, P; Cruciani, G; Testa, B1
Alvarez-Pedraglio, A; Colmenarejo, G; Lavandera, JL1
Akamatsu, M; Fujikawa, M; Nakao, K; Shimizu, R1
Campillo, NE; Guerra, A; Páez, JA1
García-Mera, X; González-Díaz, H; Prado-Prado, FJ1
Avdeef, A; Tam, KY1
Gozalbes, R; Pineda-Lucena, A1
Akamatsu, M1
Chen, L; Fei, J; Mei, Y; Ren, S; Yan, SF; Zeng, J; Zhang, JZ1
Afshari, CA; Chen, Y; Dunn, RT; Hamadeh, HK; Kalanzi, J; Kalyanaraman, N; Morgan, RE; van Staden, CJ1
Bellman, K; Knegtel, RM; Settimo, L1
Andrisano, V; Bartolini, M; Clos, MV; Di Pietro, O; Juárez-Jiménez, J; Lavilla, R; Luque, FJ; Muñoz-Torrero, D; Pérez, B; Ramón, R; Viayna, E; Vicente-García, E1
Clos, MV; Di Pietro, O; Espargaró, A; Juárez-Jiménez, J; Lavilla, R; Luque, FJ; Muñoz-Torrero, D; Pérez, B; Pérez-Areales, FJ; Sabaté, R1
Clos, MV; Di Pietro, O; Espargaró, A; Galdeano, C; Guillou, C; Lamuela-Raventós, RM; Luque, FJ; Muñoz-Torrero, D; Pérez, B; Pérez-Areales, FJ; Ragusa, IM; Sabaté, R; Vallverdú-Queralt, A; Viayna, E1
Artigas, A; Clos, MV; Gbedema, SY; Kelly, JM; Muñoz-Torrero, D; Pérez, B; Sola, I; Taylor, MC; Wright, CW1
Berenguer, D; Clos, MV; Di Pietro, O; Fisa, R; Kelly, JM; Lanzoni, A; Lavilla, R; Muñoz-Torrero, D; Pérez, B; Riera, C; Sayago, H; Sola, I; Taylor, MC; Viayna, E; Vicente-García, E1
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K1
Alencar, N; Di Pietro, O; Esteban, G; Juárez-Jiménez, J; Luque, FJ; Muñoz-Torrero, D; Pérez, B; Sola, I; Solé, M; Szałaj, N; Unzeta, M; Vázquez, J; Viayna, E1
Artigas, A; Clos, MV; Kelly, JM; Muñoz-Torrero, D; Pérez, B; Pérez-Areales, FJ; Sola, I; Taylor, MC; Viayna, E; Wright, CW1
Campillo, NE; Cañada, FJ; Canales, A; Carvalho, I; Chierrito, TPC; Martinez, A; Martínez-Gonzalez, L; Pedersoli-Mantoani, S; Perez, C; Pérez, DI; Roca, C; Sebastian-Pérez, V1
Andrisano, V; Barniol-Xicota, M; Bartolini, M; De Simone, A; Espargaró, A; Muñoz-Torrero, D; Pérez, B; Pérez-Areales, FJ; Pivetta, D; Pont, C; Sabate, R; Sureda, FX; Turcu, AL; Vázquez, S1
Brea, JM; Companys-Alemany, J; Griñán-Ferré, C; Johnson, JW; Kurnikova, MG; Loza, MI; Pallàs, M; Patel, DS; Pérez, B; Phillips, MB; Soto, D; Sureda, FX; Turcu, AL; Vázquez, S1

Reviews

1 review(s) available for desipramine and norfloxacin

ArticleYear
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
    Drug discovery today, 2016, Volume: 21, Issue:4

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk

2016

Other Studies

21 other study(ies) available for desipramine and norfloxacin

ArticleYear
Predicting blood-brain barrier permeation from three-dimensional molecular structure.
    Journal of medicinal chemistry, 2000, Jun-01, Volume: 43, Issue:11

    Topics: Blood-Brain Barrier; Databases, Factual; Models, Chemical; Molecular Conformation; Multivariate Analysis; Permeability; Pharmaceutical Preparations; Pharmacokinetics; Structure-Activity Relationship

2000
Cheminformatic models to predict binding affinities to human serum albumin.
    Journal of medicinal chemistry, 2001, Dec-06, Volume: 44, Issue:25

    Topics: Adrenergic beta-Antagonists; Antidepressive Agents, Tricyclic; Chromatography, Affinity; Cyclooxygenase Inhibitors; Databases, Factual; Humans; Hydrophobic and Hydrophilic Interactions; Penicillins; Pharmaceutical Preparations; Protein Binding; Quantitative Structure-Activity Relationship; Reproducibility of Results; Serum Albumin; Steroids

2001
QSAR study on permeability of hydrophobic compounds with artificial membranes.
    Bioorganic & medicinal chemistry, 2007, Jun-01, Volume: 15, Issue:11

    Topics: Biological Transport; Caco-2 Cells; Drug Evaluation, Preclinical; Humans; Hydrophobic and Hydrophilic Interactions; Membranes, Artificial; Permeability; Pharmaceutical Preparations; Quantitative Structure-Activity Relationship

2007
Neural computational prediction of oral drug absorption based on CODES 2D descriptors.
    European journal of medicinal chemistry, 2010, Volume: 45, Issue:3

    Topics: Administration, Oral; Humans; Models, Chemical; Neural Networks, Computer; Permeability; Quantitative Structure-Activity Relationship; Technology, Pharmaceutical

2010
Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species.
    Bioorganic & medicinal chemistry, 2010, Mar-15, Volume: 18, Issue:6

    Topics: Antiparasitic Agents; Molecular Structure; Neural Networks, Computer; Parasitic Diseases; Quantitative Structure-Activity Relationship; Species Specificity; Thermodynamics

2010
How well can the Caco-2/Madin-Darby canine kidney models predict effective human jejunal permeability?
    Journal of medicinal chemistry, 2010, May-13, Volume: 53, Issue:9

    Topics: Animals; Disease Models, Animal; Dogs; Humans; Jejunal Diseases; Kidney Diseases; Models, Biological; Permeability; Porosity; Regression Analysis

2010
QSAR-based solubility model for drug-like compounds.
    Bioorganic & medicinal chemistry, 2010, Oct-01, Volume: 18, Issue:19

    Topics: Databases, Factual; Models, Molecular; Pharmaceutical Preparations; Quantitative Structure-Activity Relationship; Solubility; Water

2010
Importance of physicochemical properties for the design of new pesticides.
    Journal of agricultural and food chemistry, 2011, Apr-13, Volume: 59, Issue:7

    Topics: Anabasine; Animals; Biological Availability; Cell Membrane Permeability; Chemical Phenomena; Drug Design; Humans; Imidazoles; Insecticides; Neonicotinoids; Nitro Compounds; Pesticides; Quantitative Structure-Activity Relationship; Receptors, Nicotinic

2011
Discovery and characterization of novel, potent, and selective cytochrome P450 2J2 inhibitors.
    Drug metabolism and disposition: the biological fate of chemicals, 2013, Volume: 41, Issue:1

    Topics: Chromatography, High Pressure Liquid; Cytochrome P-450 CYP2J2; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Drug Discovery; Enzyme Inhibitors; Humans; Inhibitory Concentration 50; Kinetics; Microsomes, Liver; Models, Molecular; Molecular Dynamics Simulation; Substrate Specificity

2013
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
    Toxicological sciences : an official journal of the Society of Toxicology, 2013, Volume: 136, Issue:1

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Transport; Chemical and Drug Induced Liver Injury; Cluster Analysis; Drug-Related Side Effects and Adverse Reactions; Humans; Liver; Male; Multidrug Resistance-Associated Proteins; Pharmacokinetics; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Risk Assessment; Risk Factors; Toxicity Tests

2013
Comparison of the accuracy of experimental and predicted pKa values of basic and acidic compounds.
    Pharmaceutical research, 2014, Volume: 31, Issue:4

    Topics: Chemistry, Pharmaceutical; Forecasting; Hydrogen-Ion Concentration; Pharmaceutical Preparations; Random Allocation

2014
1,2,3,4-Tetrahydrobenzo[h][1,6]naphthyridines as a new family of potent peripheral-to-midgorge-site inhibitors of acetylcholinesterase: synthesis, pharmacological evaluation and mechanistic studies.
    European journal of medicinal chemistry, 2014, Feb-12, Volume: 73

    Topics: Acetylcholinesterase; Animals; Binding Sites; Blood-Brain Barrier; Butyrylcholinesterase; Cholinesterase Inhibitors; Drug Design; Electrophorus; Humans; Membranes, Artificial; Models, Biological; Molecular Docking Simulation; Molecular Dynamics Simulation; Molecular Structure; Naphthyridines; Permeability; Protein Binding

2014
Tetrahydrobenzo[h][1,6]naphthyridine-6-chlorotacrine hybrids as a new family of anti-Alzheimer agents targeting β-amyloid, tau, and cholinesterase pathologies.
    European journal of medicinal chemistry, 2014, Sep-12, Volume: 84

    Topics: Alzheimer Disease; Amyloid beta-Peptides; Cholinesterase Inhibitors; Cholinesterases; Dose-Response Relationship, Drug; Humans; Models, Molecular; Molecular Structure; Naphthyridines; Structure-Activity Relationship; Tacrine; tau Proteins; Tauopathies

2014
Shogaol-huprine hybrids: dual antioxidant and anticholinesterase agents with β-amyloid and tau anti-aggregating properties.
    Bioorganic & medicinal chemistry, 2014, Oct-01, Volume: 22, Issue:19

    Topics: Acetylcholinesterase; Aminoquinolines; Amyloid beta-Peptides; Antioxidants; Catechols; Cholinesterase Inhibitors; Dose-Response Relationship, Drug; Heterocyclic Compounds, 4 or More Rings; Humans; Molecular Structure; Protein Aggregates; Protein Aggregation, Pathological; Structure-Activity Relationship; tau Proteins

2014
Synthesis and antiprotozoal activity of oligomethylene- and p-phenylene-bis(methylene)-linked bis(+)-huprines.
    Bioorganic & medicinal chemistry letters, 2014, Dec-01, Volume: 24, Issue:23

    Topics: Antimalarials; Antiprotozoal Agents; Humans; Molecular Structure; Structure-Activity Relationship

2014
Multicomponent reaction-based synthesis and biological evaluation of tricyclic heterofused quinolines with multi-trypanosomatid activity.
    European journal of medicinal chemistry, 2015, Nov-13, Volume: 105

    Topics: Acetylcholinesterase; Animals; Antiprotozoal Agents; Cell Line; Cell Survival; Cholinesterase Inhibitors; Dose-Response Relationship, Drug; Electrophorus; Leishmania infantum; Molecular Structure; Parasitic Sensitivity Tests; Quinolines; Rats; Structure-Activity Relationship; Trypanosoma brucei brucei; Trypanosoma cruzi

2015
Design, synthesis and biological evaluation of N-methyl-N-[(1,2,3-triazol-4-yl)alkyl]propargylamines as novel monoamine oxidase B inhibitors.
    Bioorganic & medicinal chemistry, 2016, 10-15, Volume: 24, Issue:20

    Topics: Dose-Response Relationship, Drug; Drug Design; Humans; Molecular Docking Simulation; Molecular Structure; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Pargyline; Structure-Activity Relationship

2016
Synthesis and biological evaluation of N-cyanoalkyl-, N-aminoalkyl-, and N-guanidinoalkyl-substituted 4-aminoquinoline derivatives as potent, selective, brain permeable antitrypanosomal agents.
    Bioorganic & medicinal chemistry, 2016, 11-01, Volume: 24, Issue:21

    Topics: Aminoquinolines; Brain; Dose-Response Relationship, Drug; Molecular Structure; Parasitic Sensitivity Tests; Structure-Activity Relationship; Trypanocidal Agents; Trypanosoma brucei brucei

2016
Chameleon-like behavior of indolylpiperidines in complex with cholinesterases targets: Potent butyrylcholinesterase inhibitors.
    European journal of medicinal chemistry, 2018, Feb-10, Volume: 145

    Topics: Acetylcholinesterase; Butyrylcholinesterase; Cholinesterase Inhibitors; Dose-Response Relationship, Drug; Humans; Indoles; Molecular Structure; Piperidines; Structure-Activity Relationship

2018
A novel class of multitarget anti-Alzheimer benzohomoadamantane‒chlorotacrine hybrids modulating cholinesterases and glutamate NMDA receptors.
    European journal of medicinal chemistry, 2019, Oct-15, Volume: 180

    Topics: Acetylcholinesterase; Adamantane; Alzheimer Disease; Butyrylcholinesterase; Cholinesterase Inhibitors; Dose-Response Relationship, Drug; Humans; Molecular Structure; Neuroprotective Agents; Receptors, N-Methyl-D-Aspartate; Structure-Activity Relationship; Tacrine

2019
Design, synthesis, and in vitro and in vivo characterization of new memantine analogs for Alzheimer's disease.
    European journal of medicinal chemistry, 2022, Jun-05, Volume: 236

    Topics: Alzheimer Disease; Animals; Caenorhabditis elegans; Disease Models, Animal; Memantine; Mice; Receptors, N-Methyl-D-Aspartate

2022