desdimethyltamoxifen has been researched along with afimoxifene* in 5 studies
1 trial(s) available for desdimethyltamoxifen and afimoxifene
Article | Year |
---|---|
Tamoxifen and metabolite concentrations in serum and breast cancer tissue during three dose regimens in a randomized preoperative trial.
Both therapeutic and adverse effects of tamoxifen may be related to its tissue concentrations. We investigated concentrations of tamoxifen, 4-hydroxytamoxifen, N-desmethyltamoxifen, and N-didesmethyltamoxifen in serum, normal breast, and breast cancer tissues during conventional dosage and two low-dose regimens. Furthermore we studied tamoxifen effects on the cancer proliferation marker Ki-67, and on sex hormone-binding globulin (SHBG).. From September 1999 to August 2001, 120 breast cancer patients were randomized to 20-, 5-, or 1-mg tamoxifen daily. We measured serum and tissue concentrations of tamoxifen and three metabolites after 28 days of treatment, and the changes between baseline and post-treatment levels of SHBG and Ki-67.. The median (range) tamoxifen concentrations (ng/ml) at doses of 1, 5, and 20 mg daily (n = 38, 37, and 36) were 7.5 (2.9-120.9), 25.2 (1.9-180.9), and 83.6 (8.7-134.4) in serum, and 78.2 (35.9-184), 272.3 (122-641), and 744.4 (208.6-2556) in breast cancer tissue, respectively. Tamoxifen levels followed a dose-concentration relationship. The concentrations of tamoxifen and metabolites were related to each other. Serum and tissue concentrations of tamoxifen were associated with corresponding changes of SHBG levels, whereas changes of Ki-67 levels were not related.. Estrogen agonistic effects of tamoxifen on SHBG decreased with lower dosage, whereas tamoxifen effects on Ki-67 expression did not change. This together with a >10-fold variation in serum tamoxifen concentrations and a serum to tissue concentration relationship suggest that tamoxifen treatment may be improved by administration of lower doses and therapeutic drug monitoring. Topics: Aged; Breast Neoplasms; Chromatography; Chromatography, High Pressure Liquid; Dose-Response Relationship, Drug; Estrogen Antagonists; Female; Humans; Ki-67 Antigen; Middle Aged; Receptors, Estrogen; Sex Hormone-Binding Globulin; Smoking; Tamoxifen; Time Factors | 2004 |
4 other study(ies) available for desdimethyltamoxifen and afimoxifene
Article | Year |
---|---|
Tamoxifen stimulates calcium entry into human platelets.
The anti-estrogenic drug tamoxifen, which is used therapeutically for treatment and prevention of breast cancer, can lead to the development of thrombosis. We found that tamoxifen rapidly increased intracellular free calcium [Ca2+]i in human platelets from both male and female donors. Thus 10 microM tamoxifen increased [Ca2+]i above the resting level by 197 +/- 19%. Tamoxifen acted synergistically with thrombin, ADP, and vasopressin to increase [Ca2+]i. The anti-estrogen ICI 182780 did not attenuate the effects of tamoxifen to increase [Ca2+]i; however, phospholipase C inhibitor U-73122 blocked this effect. 4-hydroxytamoxifen, a major metabolite of tamoxifen, also increased [Ca2+]i, but other tamoxifen metabolites and synthetic derivatives did not. Three hydroxylated derivatives of triphenylethylene (corresponding to the hydrophobic core of tamoxifen) which are transitional structures between tamoxifen (Ca agonist) and diethylstilbestrol (Ca antagonist) increased [Ca2+]i slightly (6% to 24%) and partially inhibited thrombin-induced [Ca2+]i elevation (68% to 79%). Therefore the dimethylaminoethyl moiety is responsible for tamoxifen being a Ca agonist rather than antagonist. 4-Hydroxytamoxifen and polymer-conjugated derivatives of 4-hydroxytamoxifen increased [Ca2+]i, with similar efficacy. The ability of tamoxifen to increase [Ca2+]i in platelets, leading to platelet activation, and its ability to act synergistically with other platelet agonists may contribute to development of tamoxifen-induced thrombosis. Topics: Adenosine Diphosphate; Adult; Blood Platelets; Calcium; Calcium Signaling; Diethylstilbestrol; Drug Synergism; Estradiol; Estrenes; Estrogen Antagonists; Ethamoxytriphetol; Female; Fulvestrant; Humans; Male; Middle Aged; Molecular Structure; Phosphodiesterase Inhibitors; Pyrrolidinones; Stilbenes; Structure-Activity Relationship; Tamoxifen; Thrombin; Vasopressins | 2007 |
Large interindividual variability in the in vitro formation of tamoxifen metabolites related to the development of genotoxicity.
To characterize the interindividual variability and the individual CYP involved in the formation of alpha-hydroxy-, N-desmethyl- and N-didesmethyl-tamoxifen from tamoxifen.. Microsomes from 50 human livers were used to characterize the interindividual variability in the alpha-hydroxylation, N-desmethylation and N-didesmethylation of tamoxifen. Selective inhibitors and recombinant enzymes were used to identify the forms of CYP catalysing these reactions.. The rates of formation of alpha-hydroxy-, N-desmethyl- and N-didesmethyl-tamoxifen were highly variable, and correlated with each other (P < 0.0001). The respective ranges were 0.7-11.4, 25.7-411, and below the limit of quantification--4.4 pmol mg(-1) protein min(-1). Formation of all metabolites was observed with expressed recombinant CYP3A4, inhibited by troleandomycin (65, 77 and 35%, respectively, P < 0.05) and associated with CYP3A4 expression (rs = 0.612, rs = 0.585 and rs = 0.430, P < 0.01, respectively).. Formation of alpha-hydroxy-, N-desmethyl- and N-didesmethyl-tamoxifen in vitro is highly variable and mediated predominantly by CYP3A4. Topics: Adolescent; Adult; Aged; Child; Child, Preschool; Cytochrome P-450 CYP3A; Cytochrome P-450 Enzyme System; Female; Genetic Variation; Humans; Male; Microsomes, Liver; Middle Aged; Tamoxifen | 2004 |
Interactions of tamoxifen, N-desmethyltamoxifen and 4-hydroxytamoxifen with P-glycoprotein and CYP3A.
The effects of tamoxifen, N-desmethyltamoxifen and 4-hydroxytamoxifen on transport attributable to P-glycoprotein were studied using Caco-2 cell monolayers in a transwell system, with rhodamine-123 as an index substrate for inhibition studies. The three compounds did not demonstrate differential flux between basal-apical and apical-basal directions in Caco-2 monolayers. The mean IC50 values for inhibition of rhodamine-123 transport were: 29 microM for tamoxifen; 26 microM for N-desmethyltamoxifen; and 7.4 microM for 4-hydroxytamoxifen. The three compounds were also evaluated as potential inhibitors of human CYP3A based on an in vitro model using triazolam hydroxylation by human liver microsomes as an index reaction. Mean (+/-SE) IC50 values versus formation of alpha-hydroxy-triazolam and 4-hydroxy-triazolam in human liver microsomes were, respectively: 23.5 (+/-3.9) and 18.4 (+/-5.3) microM for tamoxifen; 10.2 (+/-1.7) and 9.2 (+/-1.5) microM for N-desmethyltamoxifen; and 2.6 (+/-0.5) and 2.7 (+/-0.3) microM for 4-hydroxytamoxifen. Thus, tamoxifen, N-desmethyltamoxifen and 4-hydroxytamoxifen, do not appear to be substrates for transport by P-glycoprotein. However, tamoxifen has the potential to inhibit transport mediated by P-glycoprotein as well as CYP3A-mediated metabolism. Inhibitory effects of the principal metabolites, N-desmethyltamoxifen and 4-hydroxytamoxifen, may exceed those of the parent drug. Tamoxifen, and possibly its metabolites, may have the potential to cause drug interactions by inhibiting both drug transport and metabolism. This possibility requires further evaluation in clinical studies. Topics: ATP Binding Cassette Transporter, Subfamily B, Member 1; Biological Transport; Caco-2 Cells; Cytochrome P-450 CYP3A; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Drug Interactions; Humans; Tamoxifen | 2004 |
Direct determination of tamoxifen and its four major metabolites in plasma using coupled column high-performance liquid chromatography.
A rapid, rugged and fully automated method has been developed for the determination of tamoxifen and its major metabolites in plasma. The system is based upon an in-line extraction process combined with column switching to a coupled analytical column. The plasma sample is deproteinated by the addition of acetonitrile before injection onto a semi-permeable surface (SPS) cyano guard column (1.0 x 0.46 cm I.D.). After washing the guard column briefly with water, the sample is eluted with a mobile phase composed of 35% acetonitrile in 20 mM potassium phosphate buffer (pH 3). The eluent is directed through a cyano analytical column (25 x 0.46 cm I.D.) and a photochemical reactor where the analytes are converted to highly fluorescent phenanthrene derivatives. Tamoxifen, 4-hydroxytamoxifen, N-desdimethyltamoxifen, N-desmethyltamoxifen and tamoxifen-ol are eluted in that order at a flow-rate of 1.0 ml/min. The method has been validated for use in a clinical study utilizing tamoxifen in the treatment of recurrent cerebral astrocytomas. Topics: Adolescent; Adult; Chromatography, High Pressure Liquid; Humans; Sensitivity and Specificity; Tamoxifen | 1994 |