deoxyguanosine-triphosphate and 2--3--dideoxythymidine-triphosphate

deoxyguanosine-triphosphate has been researched along with 2--3--dideoxythymidine-triphosphate* in 3 studies

Other Studies

3 other study(ies) available for deoxyguanosine-triphosphate and 2--3--dideoxythymidine-triphosphate

ArticleYear
Analysis of HIV-2 RT mutants provides evidence that resistance of HIV-1 RT and HIV-2 RT to nucleoside analogs involves a repositioning of the template-primer.
    Journal of molecular biology, 1997, May-09, Volume: 268, Issue:3

    Mutations that confer resistance to nucleoside analogs do not cluster around the deoxynucleotide triphosphate (dNTP) binding site. Instead, these mutations appear to lie along the groove in the enzyme where the template-primer binds. Based on such structural data and on complementary biochemical analyses, it has been suggested that resistance to nucleoside analogs involves repositioning of the template-primer. We have prepared mutations in HIV-2 RT that are the homologs of mutations that confer resistance to nucleoside analogs in HIV-1 RT. Analysis of the behavior of HIV-2 RT mutants (Leu74Val, Glu89Gly, Ser215Tyr, Leu74Val/Ser215Tyr and Glu89Gly/Ser215Tyr) in vitro confirms the results obtained with HIV-1 RT: resistance is a function of the length of the template overhang. These analyses also suggest that the homolog in HIV-2 RT of one of the mutations that confers resistance to AZT in HIV-1 RT (Thr215Tyr) confers resistance by repositioning of the template-primer.

    Topics: Deoxyguanine Nucleotides; Deoxyribonucleotides; Dideoxynucleotides; DNA Primers; DNA, Viral; Drug Resistance, Microbial; HIV Reverse Transcriptase; HIV-1; HIV-2; Humans; Models, Molecular; Mutation; Recombinant Proteins; Reverse Transcriptase Inhibitors; RNA-Directed DNA Polymerase; Templates, Genetic; Thymine Nucleotides

1997
2'-Fluoro modified nucleic acids: polymerase-directed synthesis, properties and stability to analysis by matrix-assisted laser desorption/ionization mass spectrometry.
    Nucleic acids research, 1997, Nov-15, Volume: 25, Issue:22

    Fragmentation is a major factor limiting mass range and resolution in the analysis of DNA by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Protonation of the nucleobase leads to base loss and backbone cleavage by a mechanism similar to the depurination reactions employed in the chemical degradation method of DNA sequencing. In a previous study [Tang,W., Zhu,L. and Smith,L.M. (1997) Anal. Chem ., 69, 302-312], the stabilizing effect of substituting the 24 hydrogen with an electronegative group such as hydroxyl or fluorine was investigated. These 24 substitutions stabilized the N-glycosidic linkage, blocking base loss and subsequent backbone cleavage. For such chemical modifications to be of practical significance, it would be useful to be able to employ the corresponding 24-modified nucleoside triphosphates in the polymerase-directed synthesis of DNA. This would provide an avenue to the preparation of 24-modified PCR fragments and dideoxy sequencing ladders stabilized for MALDI analysis. In this paper methods are described for the polymerase-directed synthesis of 24-fluoro modified DNA, using commercially available 24-fluoronucleoside triphosphates. The ability of a number of DNA and RNA polymerases to incorporate the 24-fluoro analogs was tested. Four thermostable DNA polymerases [Pfu (exo-), Vent (exo-), Deep Vent (exo-) and UlTma] were found that were able to incorporate 24-fluoronucleotides with reasonable efficiency. In order to perform Sanger sequencing reactions, the enzymes' ability to incorporate dideoxy terminators in conjunction with the 24-fluoronucleotides was evaluated. UlTma DNA polymerase was found to be the best of the enzymes tested for this purpose. MALDI analysis of enzymatically produced 24-fluoro modified DNA using the matrix 2,5-dihydroxy benzoic acid showed no base loss or backbone fragmentation, in contrast to the extensive fragmentation evident with unmodified DNA of the same sequence.

    Topics: Deoxyadenine Nucleotides; Deoxycytosine Nucleotides; Deoxyguanine Nucleotides; Deoxyuracil Nucleotides; Dideoxynucleotides; DNA; DNA-Directed DNA Polymerase; Endonucleases; Exonucleases; Fluorine Compounds; Magnesium; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization; Thymine Nucleotides

1997
Mechanism of inhibition of human immunodeficiency virus type 1 reverse transcriptase and human DNA polymerases alpha, beta, and gamma by the 5'-triphosphates of carbovir, 3'-azido-3'-deoxythymidine, 2',3'-dideoxyguanosine and 3'-deoxythymidine. A novel RN
    The Journal of biological chemistry, 1991, Jan-25, Volume: 266, Issue:3

    Carbovir (the carbocyclic analog of 2'-3'-didehydro-2',3'-dideoxyguanosine) is a potent inhibitor of human immunodeficiency virus type 1 (HIV-1) replication. Assays were developed to assess the mechanism of inhibition by the 5'-triphosphate of carbovir of HIV-1 reverse transcriptase using either RNA or DNA templates that contain all four natural nucleotides. Carbovir-TP was a potent inhibitor of HIV-1 reverse transcriptase using either template with Ki values similar to that observed by AZT-TP, ddGTP, and ddTTP. The kinetic constants for incorporation of these nucleotide analogs into DNA by HIV-1 reverse transcriptase using either template were similar to the values seen for their respective natural nucleotides. In addition, the incorporation of either carbovir-TP or AZT-TP in the presence of dGTP or dTTP, respectively, indicated that the mechanism of inhibition by these two nucleotide analogs was due to their incorporation into the DNA resulting in chain termination. Carbovir-TP was not a potent inhibitor of DNA polymerase alpha, beta, or gamma, or DNA primase. Given the potent activity of carbovir-TP against HIV-1 reverse transcriptase and its lack of activity against human DNA polymerases, we believe that further evaluation of this compound as a potential drug for the treatment of HIV-1 infection is warranted.

    Topics: Antiviral Agents; Base Sequence; Deoxyguanine Nucleotides; Dideoxynucleotides; DNA; DNA Polymerase I; DNA Polymerase II; DNA Polymerase III; HIV-1; Humans; In Vitro Techniques; Kinetics; Molecular Sequence Data; Reverse Transcriptase Inhibitors; RNA; Templates, Genetic; Thymine Nucleotides; Zidovudine

1991