demethoxycurcumin and dimethoxycurcumin

demethoxycurcumin has been researched along with dimethoxycurcumin* in 3 studies

Other Studies

3 other study(ies) available for demethoxycurcumin and dimethoxycurcumin

ArticleYear
Dimethoxycurcumin reduces proliferation and induces apoptosis in renal tumor cells more efficiently than demethoxycurcumin and curcumin.
    Chemico-biological interactions, 2021, Apr-01, Volume: 338

    Curcumin (Cur), is a pigment with antiproliferative activity but has some pharmacokinetic limitations, which led researchers to look for more effective structure analogs. This work investigated the effects of Cur and compared them with the two analogs, demethoxycurcumin (DeMC) and dimethoxycurcumin (DiMC), to elucidate their mechanisms of action. The cytotoxic, antiproliferative, and genotoxic effects these compounds were correlated based on gene expression analysis in the human renal adenocarcinoma cells (786-O). Cur decreased CYP2D6 expression and exhibited cytotoxic effects, such as inducing monopolar spindle formation and mitotic arrest mediated by the increase in CDKN1A (p21) mRNA. This dysregulation induced cell death through a caspase-independent pathway but was mediated by decrease in MTOR and BCL2 mRNA expression, suggesting that apoptosis occurred by autophagy. DeMC and DiMC had similar effects in that they induced monopolar spindle and mitotic arrest, were genotoxic, and activated GADD45A, an important molecule in repair mechanisms, and CDKN1A. However, the induction of apoptosis by DeMC was delayed and regulated by the decrease of antiapoptotic mRNA BCL.XL and subsequent activation of caspase 9 and caspase 3/7. DiMC treatment increased the expression of CYP1A2, CYP2C19, and CYP3A4 and exhibited higher cytotoxicity compared with other compounds. It induced apoptosis by increasing mRNA expression of BBC3, MYC, and CASP7 and activation of caspase 9 and caspase 3/7. These data revealed that different gene regulation processes are involved in cell death induced by Cur, DeMC, and DiMC. All three can be considered as promising chemotherapy candidates, with DiMC showing the greatest potency.

    Topics: Apoptosis; Cell Line, Tumor; Cell Proliferation; Cell Survival; Comet Assay; Curcumin; Diarylheptanoids; Gene Expression Regulation, Neoplastic; Humans; Kidney Neoplasms; Spindle Apparatus

2021
Amyloid binding properties of curcumin analogues in Alzheimer's disease postmortem brain tissue.
    Neuroscience letters, 2016, Sep-06, Volume: 630

    The presence of β-amyloid (Aβ) containing plaques in the brain is a hallmark of Alzheimer's disease (AD) and serves as a biomarker for confirmation of diagnosis postmortem. Early diagnosis is of great importance for optimal treatment and for monitoring disease progression in the brain. Highly specific and sensitive biomarkers are thus greatly needed to assess therapeutic efficacy, not only clinically, but also in terms of clearance of histopathological lesions and decelerated neurodegeneration. The objective of the present study was to give more insight into the binding of curcumin analogues, curcuminoids, to Aβ containing plaques in postmortem tissue from AD patients. In vitro autoradiography was utilized to explore affinity and displacement of the curcuminoids; curcumin, demethoxycurcumin (DMC), bisdemethoxycurcumin (BDMC) and dimethoxycurcumin (DIMC). We found that BDMC had the highest affinity for Aβ containing plaques in cortical AD brain tissue in comparison to other curcuminoids. Subsequently, [(3)H]BDMC showed significantly higher specific binding in cortical AD brain tissue compared to control subjects. These findings suggest that curcumin analogues, especially BDMC, may serve as a potential radioligands for Aβ plaque neuroimaging.

    Topics: Aged; Aged, 80 and over; Alzheimer Disease; Aminopyridines; Amyloid beta-Peptides; Autoradiography; Benzothiazoles; Curcumin; Diarylheptanoids; Female; Humans; Inhibitory Concentration 50; Male; Temporal Lobe

2016
Reactions of reactive oxygen species (ROS) with curcumin analogues: Structure-activity relationship.
    Free radical research, 2011, Volume: 45, Issue:3

    Three curcumin analogues viz., bisdemethoxy curcumin, monodemethoxy curcumin, and dimethoxycurcumin that differ at the phenolic substitution were synthesized. These compounds have been subjected for free radical reactions with DPPH radicals, superoxide radicals (O(2)(•-)), singlet oxygen ((1)O(2)) and peroxyl radicals (CCl(3)O(2)(•)) and the bimolecular rate constants were determined. The DPPH radical reactions were followed by stopped-flow spectrometer, (1)O(2) reactions by transient luminescence spectrometer, and CCl(3)O(2)(•) reactions using pulse radiolysis technique. The rate constants indicate that the presence of o-methoxy phenolic OH increases its reactivity with DPPH and CCl(3)O(2)(•), while for molecules lacking phenolic OH, this reaction is very sluggish. Reaction of O(2)(•-) and (1)O(2) with curcumin analogues takes place preferably at β-diketone moiety. The studies thus suggested that both phenolic OH and the β-diketone moiety of curcumin are involved in neutralizing the free radicals and their relative scavenging ability depends on the nature of the free radicals.

    Topics: Biphenyl Compounds; Carbon Tetrachloride; Curcumin; Diarylheptanoids; Free Radical Scavengers; Free Radicals; Hydroxyl Radical; Peroxides; Picrates; Pulse Radiolysis; Reactive Oxygen Species; Singlet Oxygen; Spectrum Analysis; Structure-Activity Relationship; Superoxides

2011