demecolcine has been researched along with monodansylcadaverine* in 2 studies
2 other study(ies) available for demecolcine and monodansylcadaverine
Article | Year |
---|---|
MT1 melatonin receptor internalization underlies melatonin-induced morphologic changes in Chinese hamster ovary cells and these processes are dependent on Gi proteins, MEK 1/2 and microtubule modulation.
Melatonin induces cellular differentiation in numerous cell types. Data show that multiple mechanisms are involved in these processes that are cell-type specific and may be receptor dependent or independent. The focus of this study was to specifically assess the role of human MT1 melatonin receptors in cellular differentiation using an MT1-Chinese hamster ovary (CHO) model; one that reproducibly produces measurable morphologic changes in response to melatonin. Using multiple approaches, we show that melatonin induces MT1-CHO cells to hyperelongate through a MEK 1/2, and ERK 1/2-dependent mechanism that is dependent upon MT1 receptor internalization, Gi protein activation, and clathrin-mediated endocytosis. Using immunoprecipitation analysis, we show that MT1 receptors form complexes with Gi(alpha) 2,3, Gq(alpha), beta-arrestin-2, MEK 1/2, and ERK 1/2 in the presence of melatonin. We also show that MEK and ERK activity that is induced by melatonin is dependent on Gi protein activation, clathrin-mediated endocytosis and is modulated by microtubules. We conclude from these studies that melatonin-induced internalization of human MT1 melatonin receptors in CHO cells is responsible for activating both MEK 1/2 and ERK 1/2 to drive these morphologic changes. These events, as mediated by melatonin, require Gi protein activation and endocytosis mediated through clathrin, to form MT1 receptor complexes with beta-arrestin-2/MEK 1/2 and ERK 1/2. The MT1-CHO model is invaluable to mapping out signaling cascades as mediated through MT1 receptors especially because it separates out MEK/ERK 1/2 activation by MT1 receptors from that of receptor tyrosine kinases. Topics: Animals; Cadaverine; Cell Differentiation; CHO Cells; Clathrin; Cricetinae; Cricetulus; Demecolcine; Extracellular Signal-Regulated MAP Kinases; Guanosine 5'-O-(3-Thiotriphosphate); Humans; Lumicolchicines; MAP Kinase Kinase 1; MAP Kinase Kinase Kinase 2; Melatonin; Microtubules; Pertussis Toxin; Receptor, Melatonin, MT1; Tryptamines | 2008 |
Invasion of cultured human epithelial cells by Klebsiella pneumoniae isolated from the urinary tract.
The mechanisms which enable entry into cultured human epithelial cells by Klebsiella pneumoniae were compared with those of Salmonella typhi Ty2. K. pneumoniae 3091, isolated from a urine sample of a patient with a urinary tract infection, invaded human epithelial cells from the bladder and ileocecum and persisted for days in vitro. Electron microscopic studies demonstrated that K. pneumoniae was always contained in endosomes. The internalization mechanism(s) triggered by K. pneumoniae was studied by invasion assays conducted with different inhibitors that act on prokaryotic and eukaryotic cell structures and processes. Chloramphenicol inhibition of bacterial uptake revealed that bacterial de novo protein synthesis was essential for efficient invasion by K. pneumoniae and S. typhi. Interference with receptor-mediated endocytosis by g-strophanthin or monodansylcadaverine and inhibition of endosome acidification by monensin reduced the number of viable intracellular K. pneumoniae cells, but not S. typhi cells. The depolymerization of microfilaments by cytochalasin D inhibited the uptake of both bacteria. Microtubule depolymerization caused by colchicine, demecolcine, or nocodazole and the stabilization of microtubules with taxol reduced only the invasion ability of K. pneumoniae. S. typhi invasion was unaffected by microtubule depolymerization or stabilization. These data suggest that the internalization mechanism triggered by K. pneumoniae 3091 is strikingly different from the solely microfilament-dependent invasion mechanism exhibited by many of the well-studied enteric bacteria, such as enteroinvasive Escherichia coli, Salmonella, Shigella, and Yersinia strains. Topics: Bacterial Proteins; Cadaverine; Cells, Cultured; Chloramphenicol; Colchicine; Cytochalasin D; Demecolcine; Endocytosis; Epithelial Cells; Epithelium; Humans; Ionophores; Klebsiella pneumoniae; Microtubules; Monensin; Nocodazole; Nucleic Acid Synthesis Inhibitors; Ouabain; Paclitaxel; Protein Synthesis Inhibitors; Salmonella typhi; Urinary Tract; Urinary Tract Infections | 1997 |