deltorphin and norbinaltorphimine

deltorphin has been researched along with norbinaltorphimine* in 2 studies

Other Studies

2 other study(ies) available for deltorphin and norbinaltorphimine

ArticleYear
Lack of the nociceptin receptor does not affect acute or chronic nociception in mice.
    Peptides, 2002, Volume: 23, Issue:9

    The peptide nociceptin/orphanin FQ (N/OFQ) and its receptor ORL-1, also designated opioid receptor 4 (OP(4)) are involved in the modulation of nociception. Using OP(4)-knockout mice, we have studied their response following opioid receptor stimulation and under neuropathic conditions.In vas deferens from wild-type and OP(4)-knockout mice, DAMGO (mu/OP(3) agonist), deltorphine II (delta/OP(1) agonist) and (-)-U-50488 (kappa/OP(2) agonist) induced similar concentration-dependent inhibition of electrically-evoked contractions. Naloxone and naltrindole (delta/OP(1) antagonists) shifted the curves of DAMGO (pA(2)=8.6) and deltorphine II (pA(2)=10.2) to the right, in each group. In the hot-plate assay, N/OFQ (10 nmol per mouse, i.t.) increased baseline latencies two-fold in wild-type mice while morphine (10mg/kg, s.c.), deltorphine II (10 nmol per mouse, i.c.v.) and dynorphin A (20 nmol per mouse, i.c.v.) increased hot-plate latencies by about four- to five-fold with no difference observed between wild-type and knockout mice. Furthermore, no change was evident in the development of the neuropathic condition due to chronic constriction injury (CCI) of the sciatic nerve, after both thermal and mechanical stimulation. Altogether these results suggest that the presence of OP(4) receptor is not crucial for (1) the development of either acute or neuropathic nociceptive responses, and for (2) the regulation of full receptor-mediated responses to opioid agonists, even though compensatory mechanisms could not be excluded.

    Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Non-Narcotic; Analgesics, Opioid; Animals; Dose-Response Relationship, Drug; Dynorphins; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Female; Male; Mice; Mice, Knockout; Morphine; Naloxone; Naltrexone; Narcotic Antagonists; Nociceptin; Nociceptin Receptor; Oligopeptides; Opioid Peptides; Pain; Receptors, Opioid; Time Factors; Vas Deferens

2002
Spinal administration of selective opioid antagonists in amphibians: evidence for an opioid unireceptor.
    Life sciences, 1999, Volume: 64, Issue:10

    In mammals, opioids act by interactions with three distinct types of receptors: mu, delta, or kappa opioid receptors. Using a novel assay of antinociception in the Northern grass frog, Rana pipiens, previous work demonstrated that selective mu, delta, or kappa opioids produced a potent antinociception when administered by the spinal route. The relative potency of this effect was highly correlated to that found in mammals. Present studies employing selective opioid antagonists, beta-FNA, NTI, or nor-BNI demonstrated that, in general, these antagonists were not selective in the amphibian model. These data have implications for the functional evolution of opioid receptors in vertebrates and suggest that the tested mu, delta, and kappa opioids mediate antinociception via a single type of opioid receptor in amphibians, termed the unireceptor.

    Topics: Acetic Acid; Analgesics; Animals; Benzofurans; Female; Injections, Spinal; Male; Naltrexone; Narcotic Antagonists; Oligopeptides; Pain Measurement; Pyrrolidines; Rana pipiens; Receptors, Opioid; Time Factors

1999