delta-viniferin and pterostilbene

delta-viniferin has been researched along with pterostilbene* in 2 studies

Other Studies

2 other study(ies) available for delta-viniferin and pterostilbene

ArticleYear
Nutritional epigenomic and DNA-damage modulation effect of natural stilbenoids.
    Scientific reports, 2023, 01-12, Volume: 13, Issue:1

    The aim of the present work is the evaluation of biological effects of natural stilbenoids found in Vitis vinifera, with a focus on their activity as epigenetic modulators. In the present study, resveratrol, pterostilbene and for the first time their dimers (±)-trans-δ-viniferin, (±)-trans-pterostilbene dehydrodimer were evaluated in Caco-2 and HepG-2 cell lines as potential epigenetic modulators. Stilbenoids were added in a Caco-2 cell culture as a model of the intestinal epithelial barrier and in the HepG-2 as a model of hepatic environment, to verify their dose-dependent toxicity, ability to interact with DNA, and epigenomic action. Resveratrol, pterostilbene, and (±)-trans-pterostilbene dehydrodimer were found to have no toxic effects at tested concentration and were effective in reversing arsenic damage in Caco-2 cell lines. (±)-trans-δ-viniferin showed epigenomic activity, but further studies are needed to clarify its mode of action.

    Topics: Caco-2 Cells; Epigenomics; Humans; Resveratrol; Stilbenes; Vitis

2023
Arbuscular mycorrhizal symbiosis stimulates key genes of the phenylpropanoid biosynthesis and stilbenoid production in grapevine leaves in response to downy mildew and grey mould infection.
    Phytochemistry, 2016, Volume: 131

    Grapevine (Vitis spp) is susceptible to serious fungal diseases usually controlled by chemical treatments. Arbuscular mycorrhizal fungi (AMF) are obligate plant symbionts which can stimulate plant defences. We investigated the effect of mycorrhization on grapevine stilbenoid defences. Vitis vinifera cvs Chasselas, Pinot noir and the interspecific hybrid Divico, on the rootstock 41B, were mycorrhized with Rhizophagus irregularis before leaf infection by Plasmopara viticola or Botrytis cinerea. Gene expression analysis showed an up-regulation of PAL, STS, and ROMT, involved in the stilbenoid biosynthesis pathway, in plant leaves, 48 h after pathogen inoculation. This defense response could be potentiated under AMF colonization, with an intensity level depending on the gene, the plant cultivar and/or the pathogen. We also showed that higher amounts of active forms of stilbenoids (i.e trans-form of resveratrol, ε- and δ-viniferins and pterostilbene) were produced in mycorrhized plants of the three genotypes in comparison with non-mycorrhized ones, 10 days post-inoculation with either pathogen. These results support the hypothesis that AMF root colonization enhances defence reactions against a biotrophic and a necrotrophic pathogen, in the aerial parts of grapevine.

    Topics: Benzofurans; Botrytis; Oomycetes; Phenylpropionates; Plant Components, Aerial; Plant Diseases; Plant Leaves; Resorcinols; Resveratrol; Stilbenes; Symbiosis; Vitis

2016