delta-viniferin has been researched along with epsilon-viniferin* in 5 studies
5 other study(ies) available for delta-viniferin and epsilon-viniferin
Article | Year |
---|---|
Resveratrol and its dimers ε-viniferin and δ-viniferin in red wine protect vascular endothelial cells by a similar mechanism with different potency and efficacy.
Red wine compounds have been reported to reduce the rate of atherosclerosis by inducing nitric oxide (NO) production and antioxidant enzyme expression in vascular endothelial cells (VECs). The present study compared the effects of the three red wine compounds resveratrol and its dimers, ε-viniferin and δ-viniferin, on VECs function for the first time. Both 5 μM ε-viniferin and δ-viniferin, but not 5 μM resveratrol, significantly stimulated wound repair of VECs. Increased levels of wound repair induced by 10 and 20 μM ε-viniferin were significantly higher than those stimulated by 10 and 20 μM resveratrol, respectively. These stimulatory effects of the three compounds were suppressed by the NO synthase inhibitor L-NAME. When VECs were exposed to each compound, endothelial NO synthase was activated and the expression of sirtuin 1 (SIRT1) and HO-1 was induced. Addition of the SIRT1 and HO-1 inhibitors EX527 and ZnPPiX, respectively, suppressed wound repair stimulated by the three compounds, demonstrating that SIRT1 and HO-1 are involved in these wound repair processes. Furthermore, each compound induced the suppression of H Topics: Animals; Antioxidants; Atherosclerosis; Benzofurans; Carbazoles; Catalase; Cell Line; Cell Survival; Dimerization; Endothelial Cells; Enzyme Inhibitors; Gene Expression Regulation; Heme Oxygenase-1; Humans; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Synthase Type III; Protoporphyrins; Resorcinols; Resveratrol; Sirtuin 1; Stilbenes; Swine; Wine | 2020 |
Enhanced Stilbene Production and Excretion in Vitis vinifera cv Pinot Noir Hairy Root Cultures.
Topics: Acetates; Benzofurans; beta-Cyclodextrins; Cyclopentanes; Glucosides; Oxylipins; Plant Roots; Resorcinols; Resveratrol; Stilbenes; Vitis | 2016 |
Effects of elicitors on the production of resveratrol and viniferins in cell cultures of Vitis vinifera L. cv Italia.
Methyl jasmonate, jasmonic acid and chitosan were tested as elicitors on cell suspension cultures obtained from Vitis vinifera cv Italia to investigate their effect on stilbene production. Stilbene accumulation in the callus, grown under nonelicited conditions, was also investigated. Calli and cell suspensions were obtained in a B5 culture medium supplemented with 0.2 mg L(-1) NAA and 1 mg L(-1) KIN. Stilbene determination was achieved by HPLC/DAD/MS. Whereas callus biosynthesized only piceid, cell suspensions elicited with jasmonates produced several stilbenes, mainly viniferins. In suspended cells, methyl jasmonate and jasmonic acid were the most effective in stimulating stilbene biosynthesis, whereas chitosan was less effective; in fact, the amount of stilbenes obtained with this elicitor was not significantly different from that obtained for the control cells. The maximum production of total stilbenes was at day 20 of culture with 0.970 and 1.023 mg g(-1) DW for MeJA and JA, respectively. Topics: Acetates; Benzofurans; Cells, Cultured; Chitosan; Cyclopentanes; Oxylipins; Plant Growth Regulators; Plant Stems; Resorcinols; Resveratrol; Stilbenes; Vitis | 2011 |
Viniferin formation by COX-1: evidence for radical intermediates during co-oxidation of resveratrol.
Resveratrol (1) is a polyphenolic natural product, which functions as both a mechanism-based inactivator and a co-reductant of the COX-1 peroxidase. These functions are mediated through different moieties on the molecule, namely, the m-hydroquinone moiety (mechanism-based inactivator) and the phenol moiety (co-reductant). Implicit in this bifunctionality is the notion that resveratrol is oxidized at the peroxidase active site of COX-1, resulting in the formation of two hypothetical radical species. Oxidation of the m-hydroquinone moiety can generate a hypothetical m-semiquinone radical, which is unstabilized and leads to irreversible enzyme inactivation. Oxidation of the phenol moiety can generate a hypothetical phenoxy radical, which is stabilized and leads to co-reduction during peroxidase catalysis. These two radicals have been trapped as the resveratrol dimers, cis-epsilon-viniferin (4, trapped m-semiquinone radical) and trans-delta-viniferin (5, trapped phenoxy radical), and identified by liquid chromatography (LC), absorbance spectroscopy, and LC/tandem mass spectrometry (MS(n)) methods. Methoxy-resveratrol analogues, in which either the m-hydroquinone or the phenol moiety were protected as methyl ethers, were used to confirm the proposed mechanism of viniferin production by COX-1. Topics: Benzofurans; Catalysis; Chromatography, High Pressure Liquid; Cyclooxygenase 1; Mass Spectrometry; Models, Chemical; Molecular Structure; Oxidation-Reduction; Prostaglandin-Endoperoxide Synthases; Resorcinols; Resveratrol; Stilbenes; Structure-Activity Relationship | 2005 |
Determination of stilbenes (delta-viniferin, trans-astringin, trans-piceid, cis- and trans-resveratrol, epsilon-viniferin) in Brazilian wines.
Phenolics from grapes and wines can play a role against oxidation and development of atherosclerosis. Stilbenes have been shown to protect lipoproteins from oxidative damage and to have cancer chemopreventive activity. We describe a method for the direct determination of stilbenes in several red wines using high-performance liquid chromatography with UV detection. In a survey of 12 commercial wines from the south of Brazil (Rio Grande del Sul), levels of delta-viniferin are reported for the first time in different varieties of red wines. Brazilian red wine contains trans-astringin, trans-piceid, trans-resveratrol, cis-resveratrol (in high quantity: 5 times more than the trans form), epsilon-viniferin, and a compound isolated for the first time in wine, trans-delta-viniferin. Isolation and identification of delta-viniferin was achieved by NMR after extraction and fractionation of red wine phenolics. delta-Viniferin contributes, as well as cis-resveratrol and trans-piceid, to a significant proportion of stilbenes in wine dietary intake, particularly with Merlot varieties containing an average level of 10 mg/L for delta-viniferin, 15 mg/L for cis-resveratrol, and 13 mg/L for trans-piceid. The total stilbene intake from wine origin was estimated for the Brazilian population as 5.3 mg/day per person (on the basis of a regular wine consumption of 160 mL/day). delta-Viniferin can contribute to around 20% of total stilbenes in wine (average of 6.4 mg/L in red Brazilian wines). It would be important in the future to investigate the origins of the differences in wine stilbene levels in relation to the vine varieties, and the bioavailability of the newly extracted stilbene delta-viniferin in plasma after consumption of different types of wines. Topics: Benzofurans; Brazil; Chromatography, High Pressure Liquid; Glucosides; Magnetic Resonance Spectroscopy; Resorcinols; Resveratrol; Stilbenes; Wine | 2005 |