deferoxamine has been researched along with sulfasalazine in 5 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 1 (20.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Faller, B; Wohnsland, F | 1 |
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A | 1 |
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
Sekiguchi, M | 1 |
Kasukabe, T; Kumakura, S; Yamaguchi, Y | 1 |
1 review(s) available for deferoxamine and sulfasalazine
Article | Year |
---|---|
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
4 other study(ies) available for deferoxamine and sulfasalazine
Article | Year |
---|---|
High-throughput permeability pH profile and high-throughput alkane/water log P with artificial membranes.
Topics: Alkanes; Humans; Hydrogen-Ion Concentration; Intestinal Absorption; Membranes, Artificial; Octanols; Permeability; Pharmaceutical Preparations; Solubility; Water | 2001 |
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship | 2010 |
[Clinical applications of ion-sensor].
Topics: Biosensing Techniques; Chondroitin Sulfates; Colorimetry; Deferoxamine; Humans; Ions; Iron; Sulfasalazine | 1992 |
Piperlongumine rapidly induces the death of human pancreatic cancer cells mainly through the induction of ferroptosis.
Topics: Acetylcysteine; Amino Acid Chloromethyl Ketones; Animals; Antineoplastic Combined Chemotherapy Protocols; Cell Death; Cell Line, Tumor; Cyclohexylamines; Deferoxamine; Dioxolanes; Diterpenes; Drug Synergism; Fibroblasts; Humans; Iron; Mice; Pancreatic Neoplasms; Phenylenediamines; Quinoxalines; Reactive Oxygen Species; Spiro Compounds; Sulfasalazine | 2018 |