decanoylcarnitine has been researched along with octanoylcarnitine* in 7 studies
7 other study(ies) available for decanoylcarnitine and octanoylcarnitine
Article | Year |
---|---|
Preoperative plasma fatty acid metabolites inform risk of prostate cancer progression and may be used for personalized patient stratification.
Little is known about the relationship between the metabolite profile of plasma from pre-operative prostate cancer (PCa) patients and the risk of PCa progression. In this study we investigated the association between pre-operative plasma metabolites and risk of biochemical-, local- and metastatic-recurrence, with the aim of improving patient stratification.. We conducted a case-control study within a cohort of PCa patients recruited between 1996 and 2015. The age-matched primary cases (n = 33) were stratified in low risk, high risk without progression and high risk with progression as defined by the National Comprehensive Cancer Network. These samples were compared to metastatic (n = 9) and healthy controls (n = 10). The pre-operative plasma from primary cases and the plasma from metastatic patients and controls were assessed with untargeted metabolomics by LC-MS. The association between risk of progression and metabolite abundance was calculated using multivariate Cox proportional-hazard regression and the relationship between metabolites and outcome was calculated using median cut-off normalized values of metabolite abundance by Log-Rank test using the Kaplan Meier method.. Medium-chain acylcarnitines (C6-C12) were positively associated with the risk of PSA progression (p = 0.036, median cut-off) while long-chain acylcarnitines (C14-C16) were inversely associated with local (p = 0.034) and bone progression (p = 0.0033). In primary cases, medium-chain acylcarnitines were positively associated with suberic acid, which also correlated with the risk of PSA progression (p = 0.032, Log-Rank test). In the metastatic samples, this effect was consistent for hexanoylcarnitine, L.octanoylcarnitine and decanoylcarnitine. Medium-chain acylcarnitines and suberic acid displayed the same inverse association with tryptophan, while indoleacetic acid, a breakdown product of tryptophan metabolism was strongly associated with PSA (p = 0.0081, Log-Rank test) and lymph node progression (p = 0.025, Log-Rank test). These data were consistent with the increased expression of indoleamine 2,3 dioxygenase (IDO1) in metastatic versus primary samples (p = 0.014). Finally, functional experiments revealed a synergistic effect of long chain fatty acids in combination with dihydrotestosterone administration on the transcription of androgen responsive genes.. This study strengthens the emerging link between fatty acid metabolism and PCa progression and suggests that measuring levels of medium- and long-chain acylcarnitines in pre-operative patient plasma may provide a basis for improving patient stratification. Topics: Aged; Carnitine; Case-Control Studies; Chromatography, Liquid; Disease Progression; Fatty Acids; Humans; Male; Mass Spectrometry; Metabolomics; Middle Aged; Prognosis; Prostatic Neoplasms; White People | 2019 |
A nationwide retrospective observational study of population newborn screening for medium-chain acyl-CoA dehydrogenase (MCAD) deficiency in the Netherlands.
To evaluate the Dutch newborn screening (NBS) for medium-chain acyl-CoA dehydrogenase (MCAD) deficiency since 2007, a nationwide retrospective, observational study was performed of clinical, laboratory and epidemiological parameters of patients with MCAD deficiency born between 2007 and 2015. Severe MCAD deficiency was defined by ACADM genotypes associated with clinical ascertainment, or variant ACADM genotypes with a residual MCAD enzyme activity <10%. Mild MCAD deficiency was defined by variant ACADM genotypes with a residual MCAD enzyme activity ≥10%. The prevalence of MCAD deficiency was 1/8300 (95% CI: 1/7300-1/9600). Sensitivity of the Dutch NBS was 99% and specificity ~100%, with a positive predictive value of 86%. Thirteen newborns with MCAD deficiency suffered from neonatal symptoms, three of them died. Of the 189 identified neonates, 24% had mild MCAD deficiency. The acylcarnitine ratio octanoylcarnitine (C8)/decanoylcarnitine (C10) was superior to C8 in discriminating between mild and severe cases and more stable in the first days of life. NBS for MCAD deficiency has a high sensitivity, specificity, and positive predictive value. In the absence of a golden standard to confirm the diagnosis, the combination of acylcarnitine (ratios), molecular and enzymatic studies allows risk stratification. To improve evaluation of NBS protocols and clinical guidelines, additional use of acylcarnitine ratios and multivariate pattern-recognition software may be reappraised in the Dutch situation. Prospective recording of NBS and follow-up data is warranted covering the entire health care chain of preventive and curative medicine. Topics: Acyl-CoA Dehydrogenase; Carnitine; Female; Genotype; Humans; Infant, Newborn; Lipid Metabolism, Inborn Errors; Male; Neonatal Screening; Netherlands; Prevalence; Retrospective Studies | 2019 |
Medium-Chain Acylcarnitines Are Associated With Cardioembolic Stroke and Stroke Recurrence.
Objective- Stroke is a heterogeneous disease with diverse causes, which affect the risk of recurrence. This study aimed to identify novel biomarkers that are clinically relevant to the diagnosis of cardioembolic stroke (CE) and the prediction of stroke recurrence using metabolomics. Approach and Results- We obtained blood samples and clinical data from a consecutively registered, hospital-based acute stroke registry and from healthy controls. Mass-spectrometry-based profiling was performed, and several metabolomic signatures were selected for the discrimination of CE and stroke recurrence, coupled with multivariate statistical analysis. Finally, 190 acute ischemic stroke participants (43 CE patients and 147 non-CE patients) and 30 control participants were included. We obtained 29 metabolomics signatures, and of these, 2 medium-chain acylcarnitines (decanoylcarnitine and octanoylcarnitine) were selected as independent discriminants for CE (odds ratio, 2.839; 95% CI, 1.241-6.493 for decanoylcarnitine; odds ratio, 2.839; 95% CI, 1.241-6.493 for octanoylcarnitine). Elevated medium-chain acylcarnitines were also associated with a higher risk of stroke recurrence (hazard ratio, 3.767; 95% CI, 1.276-11.117 for decanoylcarnitine; hazard ratio, 5.519; 95% CI, 1.22-18.781 for octanoylcarnitine). The levels of decanoylcarnitine and octanoylcarnitine were correlated as known surrogate markers of CE. The levels of decanoylcarnitine and octanoylcarnitine were significantly higher in stroke patients with a high-risk potential of cardioembolism than in those with low or intermediate risk. Conclusions- Metabolomics provided an improved understanding of CE pathogenesis and stroke recurrence. We have identified decanoylcarnitine and octanoylcarnitine as novel biomarkers for CE and stroke recurrence. Topics: Aged; Biomarkers; Brain Ischemia; Carnitine; Chromatography, Liquid; Female; Humans; Male; Metabolomics; Middle Aged; Recurrence; Stroke; Tandem Mass Spectrometry | 2018 |
Association between arterial stiffness and serum L-octanoylcarnitine and lactosylceramide in overweight middle-aged subjects: 3-year follow-up study.
Existing data on the association between being overweight and cardiovascular morbidity and mortality risk in adults are inconsistent. We prospectively and longitudinally investigated the effects of weight on arterial stiffness and plasma metabolites in middle-aged subjects (aged 40-55 years). A group of 59 individuals who remained within the range of overweight during repeated measurements over a 3-year period was compared with a control group of 59 normal weight subjects who were matched for age and gender. Changes in metabolites by UPLC-LTQ-Orbitrap mass spectrometry and changes in brachial-ankle pulse wave velocity (ba-PWV) were examined. At baseline, the overweight group showed higher BMI, waist circumference, triglyceride, free fatty acid (FFA), glucose, insulin, and hs-CRP, and lower HDL-cholesterol than controls. After 3 years, the changes in waist circumference, diastolic and systolic blood pressure (DBP and SBP), triglyceride, FFA, glucose, insulin, hs-CRP, and ba-PWV observed in the overweight group were significantly different from those in the control group after adjusting for baseline levels. Furthermore, the overweight group showed greater increases in L-octanoylcarnitine (q=0.006) and decanoylcarnitine (q=0.007), and higher peak intensities of L-leucine, L-octanoylcarnitine, and decanoylcarnitine. Multiple linear regression analysis showed that the change in ba-PWV was independently and positively associated with changes in L-octanoylcarnitine, lactosylceramide, and SBP, and with baseline BMI. Our results indicate that the duration of overweight is an important aggravating factor for arterial stiffness, especially during middle age. Additionally, an age-related increase in plasma L-octanoylcarnitine, lactosylceramide, SBP, and baseline BMI are independent predictors of increased arterial stiffness in middle-aged individuals. Topics: Adult; Antigens, CD; Blood Pressure; Body Mass Index; Carnitine; Case-Control Studies; Humans; Lactosylceramides; Leucine; Middle Aged; Overweight; Vascular Stiffness | 2015 |
Disruption of redox homeostasis in cerebral cortex of developing rats by acylcarnitines accumulating in medium-chain acyl-CoA dehydrogenase deficiency.
Medium-chain fatty acids and acylcarnitines accumulate in medium-chain acyl-CoA dehydrogenase deficiency (MCADD), the most frequent fatty acid oxidation defect clinically characterized by episodic crises with vomiting, seizures and coma. Considering that the pathophysiology of the neurological symptoms observed in MCADD is poorly known and, to our knowledge, there is no report on the involvement of acylcarnitines in the brain damage presented by the affected patients, the objective of the present study was to investigate the in vitro effects of hexanoylcarnitine (HC), octanoylcarnitine, decanoylcarnitine (DC) and cis-4-decenoylcarnitine (cDC) at concentrations varying from 0.01 to 1.0mM on important oxidative stress parameters in cerebral cortex of young rats. HC, DC and cDC significantly induced lipid peroxidation, as determined by increased thiobarbituric acid-reactive substances (TBA-RS) values. In addition, carbonyl formation was significantly augmented and sulfhydryl content diminished by DC, reflecting induction of protein oxidative damage. HC, DC and cDC also decreased glutathione (GSH) levels, the most important brain antioxidant defense. Furthermore, DC-induced elevation of TBA-RS values and decrease of GSH levels were prevented by the free radical scavengers melatonin and α-tocopherol, indicating the involvement of reactive oxygen species in these effects. We also found that l-carnitine itself did not induce lipid and protein oxidative damage, neither reduced the antioxidant defenses. Our present data show that the major medium-chain acylcarnitines accumulating in MCADD elicit oxidative stress in rat brain. It is therefore presumed that these compounds may be involved to a certain extent in the pathogenesis of the neurologic dysfunction of MCADD. Topics: Acyl-CoA Dehydrogenase; alpha-Tocopherol; Animals; Carnitine; Cerebral Cortex; Glutathione; Homeostasis; Lipid Metabolism, Inborn Errors; Lipid Peroxidation; Male; Melatonin; Oxidative Stress; Protein Carbonylation; Rats; Rats, Wistar; Statistics, Nonparametric; Thiobarbituric Acid Reactive Substances | 2012 |
Spectrum of medium-chain acyl-CoA dehydrogenase deficiency detected by newborn screening.
Our goal was to describe the clinical spectrum of medium-chain acyl-CoA dehydrogenase deficiency detected by routine newborn screening and assess factors associated with elevations of octanoylcarnitine in newborns and characteristics associated with adverse clinical consequences of medium-chain acyl-CoA dehydrogenase deficiency.. The first 47 medium-chain acyl-CoA dehydrogenase deficiency cases detected by the New England Newborn Screening Program were classified according to initial and follow-up octanoylcarnitine values, octanoylcarnitine-decanoylcarnitine ratios, medium-chain acyl-CoA dehydrogenase genotype, follow-up biochemical parameters, and feeding by breast milk or formula.. All 20 patients who were homozygous for 985A-->G had high initial octanoylcarnitine values (7.0-36.8 microM) and octanoylcarnitine-decanoylcarnitine ratios (7.0-14.5), whereas the 27 patients with 0 to 1 copy of 985A-->G exhibited a wide range of octanoylcarnitine values (0.5-28.6 microM) and octanoylcarnitine-decanoylcarnitine ratios (0.8-12.7). Initial newborn octanoylcarnitine values decreased by days 5 to 8, but the octanoylcarnitine-decanoylcarnitine ratio generally remained stable. Among 985A-->G homozygotes, breastfed newborns had higher initial octanoylcarnitine values than newborns who received formula. Adverse events occurred in 5 children, 4 985A-->G homozygotes and 1 compound heterozygote with a very high initial octanoylcarnitine: 2 survived severe neonatal hypoglycemia, 1 survived a severe hypoglycemic episode at 15 months of age, and 2 died as a result of medium-chain acyl-CoA dehydrogenase deficiency at ages 11 and 33 months.. Newborn screening for medium-chain acyl-CoA dehydrogenase deficiency has detected cases with a wide range of genotypes and biochemical abnormalities. Although most children do well, adverse outcomes have not been entirely avoided. Assessment of potential risk and determination of appropriate treatment remain a challenge. Topics: Acyl-CoA Dehydrogenase; Biomarkers; Breast Feeding; Carnitine; Humans; Infant Formula; Infant, Newborn; Neonatal Screening; Point Mutation; Sequence Analysis, DNA | 2008 |
Medium chain acyl-CoA dehydrogenase deficiency in Pennsylvania: neonatal screening shows high incidence and unexpected mutation frequencies.
Medium chain acyl-CoA dehydrogenase deficiency (MCAD) is a defect in the mitochondrial oxidation of fatty acids. The disorder typically presents with episodes of vomiting and hypoglycemia, sometimes with changes in mental status and hepatic failure. These Reye's-like features may culminate in coma and death. Stress, intercurrent illness, and reaction to childhood immunization have been shown to precipitate acute metabolic episodes in MCAD patients. All cases are caused by mutations of the single MCAD gene on chromosome 1. Most clinically ascertained cases are caused by an A985G transition in exon 11. Here we report the preliminary findings of MCAD patients detected prospectively through a supplemental newborn screening program in Pennsylvania using tandem mass spectrometry. From the first 80,371 newborns screened we prospectively found nine babies with MCAD (1/8930) plus two additional newborns screened because of a previously known family history. Molecular analysis showed 56% of the detected patients to be compound heterozygotes for the A985G and a second mutation. This is in contrast to clinical retrospective studies which have found only 20% to be compound heterozygotes. We have identified two of the other mutations including a novel mutation (DG91/C92, 6-bp deletion) in one of our patients by using single-stranded conformation polymorphism (SSCP) and sequence analysis of conformers. Our results confirm that MCAD is one of the more common inborn errors of metabolism. The different mutation frequencies observed between retrospective clinical studies and our prospective newborn screening study suggest that clinical ascertainment may lead to preferential identification of the A985G mutation. Topics: Acyl-CoA Dehydrogenase; Acyl-CoA Dehydrogenases; Amino Acid Sequence; Base Sequence; Carnitine; Cohort Studies; DNA; Female; Gene Deletion; Genetic Testing; Heterozygote; Humans; Incidence; Infant, Newborn; Male; Molecular Sequence Data; Mutation; Pennsylvania; Prospective Studies | 1995 |