debrisoquin and erythromycin

debrisoquin has been researched along with erythromycin in 4 studies

Research

Studies (4)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's1 (25.00)18.2507
2000's2 (50.00)29.6817
2010's1 (25.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Belas, F; Chaudhary, AK; Cvetkovic, M; Dempsey, PJ; Fromm, MF; Kim, RB; Leake, B; Roden, DM; Roden, MM; Wandel, C; Wilkinson, GR; Wood, AJ1
González-Díaz, H; Orallo, F; Quezada, E; Santana, L; Uriarte, E; Viña, D; Yáñez, M1
Choi, SS; Contrera, JF; Hastings, KL; Kruhlak, NL; Sancilio, LF; Weaver, JL; Willard, JM1
García-Mera, X; González-Díaz, H; Prado-Prado, FJ1

Other Studies

4 other study(ies) available for debrisoquin and erythromycin

ArticleYear
Interrelationship between substrates and inhibitors of human CYP3A and P-glycoprotein.
    Pharmaceutical research, 1999, Volume: 16, Issue:3

    Topics: Animals; Aryl Hydrocarbon Hydroxylases; ATP Binding Cassette Transporter, Subfamily B, Member 1; Biological Transport; Caco-2 Cells; Cells, Cultured; Cytochrome P-450 CYP3A; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Drug Resistance, Multiple; Enzyme Inhibitors; Humans; Male; Mice; Oxidoreductases, N-Demethylating; Pharmacokinetics; Substrate Specificity

1999
Quantitative structure-activity relationship and complex network approach to monoamine oxidase A and B inhibitors.
    Journal of medicinal chemistry, 2008, Nov-13, Volume: 51, Issue:21

    Topics: Computational Biology; Drug Design; Humans; Isoenzymes; Molecular Structure; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Quantitative Structure-Activity Relationship

2008
Development of a phospholipidosis database and predictive quantitative structure-activity relationship (QSAR) models.
    Toxicology mechanisms and methods, 2008, Volume: 18, Issue:2-3

    Topics:

2008
Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species.
    Bioorganic & medicinal chemistry, 2010, Mar-15, Volume: 18, Issue:6

    Topics: Antiparasitic Agents; Molecular Structure; Neural Networks, Computer; Parasitic Diseases; Quantitative Structure-Activity Relationship; Species Specificity; Thermodynamics

2010