deamino-arginine-vasopressin has been researched along with relcovaptan* in 6 studies
6 other study(ies) available for deamino-arginine-vasopressin and relcovaptan
Article | Year |
---|---|
Vasopressin-induced facilitation of adrenergic responses in the rat mesenteric artery is V1-receptor dependent.
1. The present study was designed to analyse the possible involvement of V1- and V2-receptors in vasopressin (AVP)-induced facilitation of the sympathetic nervous system. Furthermore, we aimed to determine whether the site of facilitation by AVP is located pre- or postsynaptically. 2. Electrical field stimulation (EFS) was applied on the rat mesteric artery to activate the sympathetic nervous system. In addition, we evaluated the direct vascular effects of AVP. The postsynaptic effect of AVP on the sympathetic nervous system was investigated by exposing the vessels to exogenous noradrenaline. These experiments were performed in the absence or presence of selective V1 and V2 receptor antagonists SR 49059 and SR 121463, respectively. Desmopressin was applied as a selective V2 agonist. 3. The direct vasoconstrictor effect of AVP was antagonized by SR 49059 and not by SR 121463. Desmopressin neither showed any direct vasoconstrictor effect nor produced vasodilatation after a precontraction induced by noradrenaline (10 microM). The EFS-induced rise in vascular tone could be increased by a sub-pressor concentration of AVP. This fascilitation could be antagonized by SR 49059, but not by SR 121463. Desmopressin did not influence the increase in vascular tone during EFS. Vasoconstriction induced by exogenous noradrenaline could be facilitated by a sub-pressor concentration of AVP and this selective postsynaptic effect could be antagonized by V1-receptor blockade. 4. In conclusion, the AVP-induced facilitation of the sympathetic nervous system is completely V1-receptor dependent and at least partly postsynaptically mediated. Topics: Adrenergic Fibers; Animals; Antidiuretic Hormone Receptor Antagonists; Deamino Arginine Vasopressin; In Vitro Techniques; Indoles; Male; Mesenteric Arteries; Pyrrolidines; Rats; Rats, Wistar; Receptors, Vasopressin; Vasoconstriction; Vasopressins | 2003 |
Nitric oxide, but not vasopressin V2 receptor-mediated vasodilation, modulates vasopressin-induced renal vasoconstriction in rats.
The renal vascular response to vasopressin and its modulation were evaluated in vivo by infusing the peptide directly into the renal artery of anaesthetized rats. The intra-renal artery (i.r.a) infusion of vasopressin induced a dose-dependent decrease in renal blood flow. Vasoconstriction was obvious at a dose of 3 ng/kg per min and reached a maximum at 100 ng/kg per min. The dose required for a half-maximal response (ED50) was 24+/-4 ng/kg per min (mean+/-SEM, n=8), corresponding to an estimated concentration in renal arterial blood required for a half-maximal response (EC50) of 1.9+/-0.6 nM. Thiobutabarbitone anaesthesia markedly increased plasma vasopressin concentration. This increase was prevented partially by hypotonic hydration of the rats without any change in the renal vascular response to exogenous vasopressin. Vasopressin-induced vasoconstriction dose/response curves were similar in homozygous and heterozygous Brattleboro rats. Infusion of desmopressin (1-1000 ng/kg per min, i.r.a.), a vasopressin V2 receptor-selective agonist, failed to induce renal vasodilation or vasoconstriction. In the presence of SR 49059 (1 mg/kg i.v.), a vasopressin V1A receptor antagonist that completely abolished the vasopressin-induced renal vasoconstriction, desmopressin again failed to induce vasodilation. Inhibition of nitric oxide synthase by N(omega)-nitro-L-arginine (L-NNA, 100 microg/kg for 10 min and 7.5 microg/kg per min, i.r.a.) enhanced vasopressin-induced renal vasoconstriction (EC50 0.6+/-0.1 nM, P<0.05). In contrast, cyclooxygenase blockade by indomethacin (5 mg/kg, i.v.) neither modified the vasopressin-induced decrease in renal blood flow nor altered the potentiation of vasoconstriction by L-NNA. These results show that the constrictor response of the rat renal vascular bed in vivo is observed only with high local concentrations of vasopressin. This hyporeactivity in vivo was not explained by an anaesthesia-elicited increase in endogenous vasopressin, nor by a modulatory effect linked to V2 receptor activation or prostanoid release. In contrast, NO release contributed to the attenuation of vasopressin-induced renal vasoconstriction. Topics: Anesthesia; Animals; Antidiuretic Hormone Receptor Antagonists; Deamino Arginine Vasopressin; Dose-Response Relationship, Drug; Drug Interactions; Hemodynamics; Hormone Antagonists; Indoles; Male; Nitric Oxide; Pyrrolidines; Rats; Rats, Brattleboro; Rats, Sprague-Dawley; Renal Agents; Renal Artery; Renal Circulation; Thiopental; Vasoconstriction; Vasodilator Agents; Vasopressins | 2000 |
Evidence that atypical vasopressin V(2) receptor in inner medulla of kidney is V(1B) receptor.
Vasopressin V(2) receptors at high-density and V(1B) receptors are candidates for the V(2)-like receptor, which evokes an increase in [Ca(2+)](i) when stimulated by the vasopressin V(2) receptor agonist 1-desamino-8-D-arginine vasopressin (dDAVP) in kidney inner medullary collecting duct. We compared the pharmacological characteristics of vasopressin V(2) and V(1B) receptors in Chinese hamster ovary (CHO) cells to those of vasopressin V(2)-like receptors in rat inner medullary collecting duct cells. The vasopressin V(1B) receptor-selective agonist [deamino-Cys(1), D-3-(Pyridyl)-Ala(2), Arg(8)]vasopressin (D3PVP) did not stimulate the [Ca(2+)](i) increase in high-density vasopressin V(2) receptor-expressing CHO cells, but did in inner medullary collecting duct cells. Moreover, the vasopressin V(1A)/V(2) receptor dual antagonist 4'-[(2-methyl-1,4,5,6-tetrahydroimidazo[4,5-d][1] benzazepin-6-yl)carbonyl] 2-phenylbenzanilide (YM087), which has no effect on vasopressin V(1B) receptors, did not block the [Ca(2+)](i) increase in inner medullary collecting duct cells when stimulated by dDAVP and D3PVP. On reverse transcription-polymerase chain reaction (RT-PCR) analysis of kidney, vasopressin V(1B) receptor mRNA was detected only in the medulla. We propose that the true nature of the vasopressin V(2)-like receptor in the inner medullary collecting duct is the vasopressin V(1B) receptor, rather than the vasopressin V(2) receptor expressed at high-density. Topics: Animals; Benzazepines; Calcium; CHO Cells; Cricetinae; Deamino Arginine Vasopressin; Dose-Response Relationship, Drug; Humans; Indoles; Inositol Phosphates; Kidney Medulla; Morpholines; Pyrrolidines; Rats; Receptors, Vasopressin; Renal Agents; RNA, Messenger; Spiro Compounds; Vasopressins | 2000 |
V1a- and V2-type vasopressin receptors mediate vasopressin-induced Ca2+ responses in isolated rat supraoptic neurones.
1. The pharmacological profile of receptors activated by vasopressin (AVP) in freshly dissociated supraoptic magnocellular neurones was investigated using specific V1a- and V2-type AVP receptor agonists and antagonists. 2. In 97 % of AVP-responding neurones (1-3000 nM) V1a or V2 receptor type agonists (F-180 and dDAVP, respectively) elicited dose-dependent [Ca2+]i transients that were suppressed by removal of external Ca2+. 3. The [Ca2+]i response induced by 1 microM F-180 or dDAVP was selectively blocked by 10 nM of V1a and V2 antagonists (SR 49059 and SR 121463A, respectively). The response to V1a agonist was maintained in the presence of the V2 antagonist, and the V2 agonist-induced response persisted in the presence of the V1a antagonist. 4. The [Ca2+]i response induced by 1 microM AVP was partially (61 %) blocked by 10 nM SR 121463A. This blockade was increased by a further 31 % with the addition of 10 nM SR 49059. Similarly, the AVP-induced response was partially (47 %) decreased by SR 49059, and a further inhibition of 33 % was achieved in the presence of SR 121463A. 5. We demonstrate that AVP acts on the magnocellular neurones via two distinct types of AVP receptors that exhibit the pharmacological profiles of V1a and V2 types. However, since V2 receptor mRNA is not expressed in the supraoptic nucleus (SON), and since V1b receptor transcripts are observed in the SON, we propose that the V2 receptor agonist and antagonist act on a 'V2-like' receptor or a new type of AVP receptor that remains to be elucidated. The possibility that V2 ligands act on the V1b receptor cannot be excluded. Topics: Animals; Antidiuretic Hormone Receptor Antagonists; Arginine Vasopressin; Calcium; Deamino Arginine Vasopressin; In Vitro Techniques; Indoles; Kinetics; Male; Morpholines; Neurons; Pyrrolidines; Rats; Rats, Wistar; Receptors, Vasopressin; Spiro Compounds; Supraoptic Nucleus; Transcription, Genetic; Vasoconstrictor Agents; Vasopressins | 1999 |
Vasopressin V2 (SR121463A) and V1a (SR49059) receptor antagonists both inhibit desmopressin vasorelaxing activity.
Although [Arg(8)]vasopressin is a potent vasoconstrictor, it possesses vasorelaxant properties manifested either after vasopressin V1 receptor blockade or directly in some vascular beds. The nature of the receptor involved in the vasorelaxant effect of [deamino-Cys(1) D-Arg(8)]vasopressin (desmopressin), a vasopressin V2 receptor agonist, was studied on rat precontracted aortic rings by the use of highly selective new non-peptide vasopressin receptor antagonists. The present study demonstrates for the first time that desmopressin relaxant effect is antagonized by the vasopressin V2 receptor antagonist SR121463A, but also by the vasopressin V1A receptor antagonist SR49059, suggesting that desmopressin-induced relaxation is mediated by a receptor subtype sharing both V1A and V2 pharmacological profiles. Topics: Animals; Antidiuretic Hormone Receptor Antagonists; Aorta; Arginine Vasopressin; Deamino Arginine Vasopressin; Endothelium, Vascular; Hemostatics; Hormone Antagonists; Indoles; Male; Morpholines; Pyrrolidines; Rats; Rats, Wistar; Spiro Compounds | 1999 |
Effect of SR-49059, a vasopressin V1a antagonist, on human vascular smooth muscle cells.
The effects of SR-49059, a new nonpeptide and selective arginine vasopressin (AVP) V1a antagonist, were investigated in binding and functional studies on cultured human aortic vascular smooth muscle cells (VSMC). Characterization of human vascular V1a receptors, using a specific V1a radioiodinated ligand, showed that [125I]-linear AVP antagonist binding to human VSMC membranes was time dependent, reversible, and saturable. A single population of high-affinity binding sites (apparent equilibrium dissociation constant = 15 +/- 6 pM; maximum binding density = 36 +/- 5 fmol/mg protein, i.e., approximately 3,000 sites/cell) with the expected V1a profile was identified. Exposure of these cells to AVP dose-dependently produced cytosolic free [Ca2+] increase [AVP concentration required to obtain a half-maximal response (EC50) = 23 +/- 9 nM] and proliferation (EC50 = 3.2 +/- 0.5 nM). SR-49059 strongly and stereospecifically inhibited [125I]-linear AVP antagonist binding to VSMC V1a receptors [inhibition constant (Ki) = 1.4 +/- 0.3 nM], AVP-evoked Ca2+ increase [concentration of inhibitor required to obtain 50% inhibition of specific binding (IC50) = 0.41 +/- 0.06 nM], and the mitogenic effects induced by 100 nM AVP (IC50 = 0.83 +/- 0.04 nM). OPC-21268, another nonpeptide V1a antagonist, was more than two orders of magnitude less potent than SR-49059 in these models. However, the consistent affinity (Ki = 138 +/- 21 nM) and activity found with OPC-21268 on human VSMC in comparison with the inactivity already observed for other human V1a receptors (liver, platelets, adrenals, and uterus) strongly suggested the existence of human AVP V1a-receptor subtypes.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: Aorta; Arginine Vasopressin; Calcium; Cell Division; Cell Membrane; Cells, Cultured; Deamino Arginine Vasopressin; Dose-Response Relationship, Drug; Humans; Indoles; Iodine Radioisotopes; Kinetics; Muscle, Smooth, Vascular; Oxytocin; Piperidines; Pyrrolidines; Quinolones; Radioligand Assay; Receptors, Vasopressin; Vasopressins | 1995 |