dan 2163 has been researched along with sb 277011 in 7 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (14.29) | 29.6817 |
2010's | 4 (57.14) | 24.3611 |
2020's | 2 (28.57) | 2.80 |
Authors | Studies |
---|---|
Jadhav, A; Kerns, E; Nguyen, K; Shah, P; Sun, H; Xu, X; Yan, Z; Yu, KR | 1 |
Kabir, M; Kerns, E; Nguyen, K; Shah, P; Sun, H; Wang, Y; Xu, X; Yu, KR | 1 |
Kabir, M; Kerns, E; Neyra, J; Nguyen, K; Nguyễn, ÐT; Shah, P; Siramshetty, VB; Southall, N; Williams, J; Xu, X; Yu, KR | 1 |
Itkin, M; Kabir, M; Mathé, EA; Nguyễn, ÐT; Padilha, EC; Shah, P; Shinn, P; Siramshetty, V; Wang, AQ; Williams, J; Xu, X; Yu, KR; Zhao, T | 1 |
Agai-Csongor, E; Bugovics, G; Domány, G; Fazekas, K; Gyertyán, I; Horváth, A; Kiss, B; Laszlovszky, I; Némethy, Z; Schmidt, E; Szombathelyi, Z | 1 |
Dulawa, SC; Ho, EV; Klenotich, SJ; McMurray, MS; Server, CH | 1 |
Ananthan, S; Głowacka, U; Kosmowska, B; Ossowska, K; Wardas, J | 1 |
1 review(s) available for dan 2163 and sb 277011
Article | Year |
---|---|
Using in vitro ADME data for lead compound selection: An emphasis on PAMPA pH 5 permeability and oral bioavailability.
Topics: Administration, Oral; Animals; Betamethasone; Biological Availability; Caco-2 Cells; Cell Membrane Permeability; Cells, Cultured; Dexamethasone; Dogs; Dose-Response Relationship, Drug; Humans; Hydrogen-Ion Concentration; Madin Darby Canine Kidney Cells; Mice; Molecular Structure; Neural Networks, Computer; Ranitidine; Rats; Structure-Activity Relationship; Verapamil | 2022 |
6 other study(ies) available for dan 2163 and sb 277011
Article | Year |
---|---|
Highly predictive and interpretable models for PAMPA permeability.
Topics: Artificial Intelligence; Caco-2 Cells; Cell Membrane Permeability; Humans; Models, Biological; Organic Chemicals; Regression Analysis; Support Vector Machine | 2017 |
Predictive models of aqueous solubility of organic compounds built on A large dataset of high integrity.
Topics: Drug Discovery; Organic Chemicals; Pharmaceutical Preparations; Solubility | 2019 |
Retrospective assessment of rat liver microsomal stability at NCATS: data and QSAR models.
Topics: Animals; Computer Simulation; Databases, Factual; Drug Discovery; High-Throughput Screening Assays; Liver; Machine Learning; Male; Microsomes, Liver; National Center for Advancing Translational Sciences (U.S.); Pharmaceutical Preparations; Quantitative Structure-Activity Relationship; Rats; Rats, Sprague-Dawley; Retrospective Studies; United States | 2020 |
Subnanomolar dopamine D3 receptor antagonism coupled to moderate D2 affinity results in favourable antipsychotic-like activity in rodent models: I. neurochemical characterisation of RG-15.
Topics: Amisulpride; Animals; CHO Cells; Cricetinae; Cricetulus; Dopamine; Dopamine Antagonists; Dopamine D2 Receptor Antagonists; Dose-Response Relationship, Drug; Haloperidol; Humans; Inhibitory Concentration 50; Male; Mice; Nitriles; Prolactin; Pyridines; Rats; Rats, Wistar; Receptors, Dopamine D3; Sulfonamides; Sulpiride; Tetrahydroisoquinolines | 2008 |
Dopamine D2/3 receptor antagonism reduces activity-based anorexia.
Topics: Amisulpride; Animals; Anorexia Nervosa; Benzodiazepines; Disease Models, Animal; Dopamine D2 Receptor Antagonists; Eating; Female; Indoles; Mice; Mice, Inbred BALB C; Motor Activity; Nitriles; Olanzapine; Piperidines; Receptors, Dopamine D3; Salicylamides; Sulpiride; Tetrahydroisoquinolines; Weight Loss | 2015 |
Pramipexole at a Low Dose Induces Beneficial Effect in the Harmaline-induced Model of Essential Tremor in Rats.
Topics: Amisulpride; Animals; Anti-Dyskinesia Agents; Benzothiazoles; Disease Models, Animal; Dopamine Agonists; Dopamine Antagonists; Dose-Response Relationship, Drug; Essential Tremor; Haloperidol; Harmaline; Imidazoles; Male; Movement; Nitriles; Pramipexole; Pyridines; Rats, Wistar; Receptors, Dopamine D2; Receptors, Dopamine D3; Sulpiride; Tetrahydroisoquinolines; Tetrahydronaphthalenes; Treatment Outcome | 2016 |