dalcetrapib and lathosterol

dalcetrapib has been researched along with lathosterol* in 2 studies

Trials

2 trial(s) available for dalcetrapib and lathosterol

ArticleYear
Treatment of low HDL-C subjects with the CETP modulator dalcetrapib increases plasma campesterol only in those without ABCA1 and/or ApoA1 mutations.
    Lipids, 2014, Volume: 49, Issue:12

    We investigated the effect of dalcetrapib treatment on phytosterol levels in patients with familial combined hyperlipidemia (FCH) or familial hypoalphalipoproteinemia (FHA) due to mutations in apolipoprotein A1 (ApoA1) or ATP-binding cassette transporter A1 (ABCA1). Patients (n = 40) with FCH or FHA received dalcetrapib 600 mg or placebo in this 4-week, double-blind, crossover study. Lipids, apolipoproteins, cholesteryl ester transfer protein (CETP) activity and mass, and phytosterols were assessed. Dalcetrapib increased high-density lipoprotein cholesterol (HDL-C) and ApoA1 levels to a similar extent in FHA (+22.8, +13.9%) and FCH (+18.4, +12.1%), both p < 0.001 vs. placebo. Changes in CETP activity and mass were comparable for FHA (-31.5, +120.9%) and FCH (-26.6, +111.9%), both p < 0.0001 vs. placebo. Campesterol and lathosterol were unchanged in FHA (+3.8, +3.0%), but only campesterol was markedly increased in FCH (+25.0%, p < 0.0001 vs. placebo). Campesterol increased with dalcetrapib treatment in FCH but not in FHA, despite comparable HDL-C and ApoA1 increases, suggesting that ApoA1 and/or ABCA1 is essential for HDL lipidation by enterocytes in humans.

    Topics: Amides; Apolipoprotein A-I; ATP Binding Cassette Transporter 1; Cholesterol; Cholesterol Ester Transfer Proteins; Cholesterol, HDL; Cross-Over Studies; Double-Blind Method; Esters; Humans; Hypoalphalipoproteinemias; Mutation; Phytosterols; Sulfhydryl Compounds; Treatment Outcome

2014
Effect of dalcetrapib, a CETP modulator, on non-cholesterol sterol markers of cholesterol homeostasis in healthy subjects.
    Atherosclerosis, 2011, Volume: 219, Issue:2

    Subjects with high HDL-C show elevated plasma markers of cholesterol absorption and reduced markers of cholesterol synthesis. We evaluated the effect of dalcetrapib, a cholesteryl ester transfer protein modulator, on markers of cholesterol homeostasis in healthy subjects.. Dalcetrapib was administered daily with or without ezetimibe in a randomized, open-label, crossover study in 22 healthy subjects over three 7-day periods: dalcetrapib 900 mg, ezetimibe 10mg, dalcetrapib 900 mg plus ezetimibe 10mg. Plasma non-cholesterol sterols lathosterol and desmosterol (cholesterol synthesis markers) and campesterol, β-sitosterol and cholestanol (intestinal cholesterol absorption markers) were measured. A hamster model was used to compare the effect of dalcetrapib and torcetrapib with or without ezetimibe on these markers and determine the effect of dalcetrapib on cholesterol absorption.. Dalcetrapib increased campesterol, β-sitosterol, and cholestanol by 27% (p = 0.001), 32% (p < 0.001), and 12% (p = 0.03), respectively, in man (non-cholesterol sterol/cholesterol ratio). Dalcetrapib+ezetimibe reduced campesterol by 11% (p = 0.02); β-sitosterol and cholestanol were unaffected. Lathosterol and desmosterol were unchanged with dalcetrapib, but both increased with ezetimibe alone (56-148%, p < 0.001) and with dalcetrapib + ezetimibe (32-38%, p < 0.001). In hamsters, dalcetrapib and torcetrapib increased HDL-C by 49% (p = 0.04) and 72% (p = 0.003), respectively. Unlike torcetrapib, dalcetrapib altered cholesterol homeostasis towards increased markers of cholesterol absorption; cholesterol synthesis markers were unaffected by either treatment. Dalcetrapib did not change plasma (3)H-cholesterol level but increased (3)H-cholesterol in plasma HDL vs non-HDL, after oral dosing of labeled cholesterol.. Dalcetrapib specifically increased markers of cholesterol absorption, most likely reflecting nascent HDL lipidation by intestinal ABCA1, without affecting markers of synthesis.

    Topics: Amides; Animals; Anticholesteremic Agents; Azetidines; Biomarkers; Cholestanol; Cholesterol; Cholesterol Ester Transfer Proteins; Cholesterol, HDL; Cricetinae; Cross-Over Studies; Desmosterol; Esters; Ezetimibe; Homeostasis; Humans; Intestinal Absorption; Lipid Metabolism; Male; Mesocricetus; Models, Animal; Phytosterols; Quinolines; Sitosterols; Sulfhydryl Compounds; Switzerland

2011