Page last updated: 2024-09-04

d 890 and 2-amino-5-phosphonovalerate

d 890 has been researched along with 2-amino-5-phosphonovalerate in 1 studies

*2-Amino-5-phosphonovalerate: The D-enantiomer is a potent and specific antagonist of NMDA glutamate receptors (RECEPTORS, N-METHYL-D-ASPARTATE). The L form is inactive at NMDA receptors but may affect the AP4 (2-amino-4-phosphonobutyrate; APB) excitatory amino acid receptors. [MeSH]

*2-Amino-5-phosphonovalerate: The D-enantiomer is a potent and specific antagonist of NMDA glutamate receptors (RECEPTORS, N-METHYL-D-ASPARTATE). The L form is inactive at NMDA receptors but may affect the AP4 (2-amino-4-phosphonobutyrate; APB) excitatory amino acid receptors. [MeSH]

Compound Research Comparison

Studies
(d 890)
Trials
(d 890)
Recent Studies (post-2010)
(d 890)
Studies
(2-amino-5-phosphonovalerate)
Trials
(2-amino-5-phosphonovalerate)
Recent Studies (post-2010) (2-amino-5-phosphonovalerate)
18004,3931539

Protein Interaction Comparison

ProteinTaxonomyd 890 (IC50)2-amino-5-phosphonovalerate (IC50)
Glutamate receptor ionotropic, NMDA 1 Rattus norvegicus (Norway rat)0.29
Glutamate receptor ionotropic, NMDA 2A Rattus norvegicus (Norway rat)0.29
Glutamate receptor ionotropic, NMDA 2BRattus norvegicus (Norway rat)0.29
Glutamate receptor ionotropic, NMDA 2CRattus norvegicus (Norway rat)0.29
Glutamate receptor ionotropic, NMDA 2DRattus norvegicus (Norway rat)0.29
Glutamate receptor ionotropic, NMDA 3BRattus norvegicus (Norway rat)0.29
Glutamate receptor ionotropic, NMDA 3ARattus norvegicus (Norway rat)0.29

Research

Studies (1)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (100.00)29.6817
2010's0 (0.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Enoki, R; Kiuchi, T; Koizumi, A; Kudo, Y; Miyakawa, H; Sasaki, G1

Other Studies

1 other study(ies) available for d 890 and 2-amino-5-phosphonovalerate

ArticleYear
NMDA receptor-mediated depolarizing after-potentials in the basal dendrites of CA1 pyramidal neurons.
    Neuroscience research, 2004, Volume: 48, Issue:3

    Topics: Animals; Calcium Channel Blockers; Cells, Cultured; Dendrites; Electric Stimulation; Excitatory Postsynaptic Potentials; GABA Antagonists; Gallopamil; Hippocampus; Lidocaine; Male; Models, Neurological; Patch-Clamp Techniques; Pyramidal Cells; Rats; Rats, Wistar; Receptors, N-Methyl-D-Aspartate; Sodium Channel Blockers; Statistics, Nonparametric; Valine

2004