Page last updated: 2024-08-24

d 888 and isradipine

d 888 has been researched along with isradipine in 4 studies

Research

Studies (4)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's3 (75.00)18.2507
2000's1 (25.00)29.6817
2010's0 (0.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Dietel, M; Höllt, V; Kouba, M; Vogt, G1
Bosse, E; Donatin, K; Flockerzi, V; Hofmann, F; Lacinova, L; Ludwig, A; Welling, A1
Birnbaumer, L; Hofmann, F; Ito, H; Klugbauer, N; Lacinová, L; Schuster, A1
Hoda, JC; Huber, IG; Sinnegger-Brauns, MJ; Striessnig, J; Walter-Bastl, D; Wappl-Kornherr, E1

Other Studies

4 other study(ies) available for d 888 and isradipine

ArticleYear
Stereoisomers of calcium antagonists which differ markedly in their potencies as calcium blockers are equally effective in modulating drug transport by P-glycoprotein.
    Biochemical pharmacology, 1992, Jun-23, Volume: 43, Issue:12

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 1; Binding, Competitive; Biological Transport; Calcium Channel Blockers; Cell Line; Dihydropyridines; Drug Resistance; Haplorhini; Immunoblotting; Membrane Glycoproteins; Mice; RNA, Messenger; Stereoisomerism; Verapamil; Vinblastine

1992
Expression of the L-type calcium channel with two different beta subunits and its modulation by Ro 40-5967.
    Pflugers Archiv : European journal of physiology, 1995, Volume: 429, Issue:3

    Topics: Animals; Antibodies, Monoclonal; Benzimidazoles; Calcium Channel Blockers; Calcium Channels; CHO Cells; Cricetinae; Electrophysiology; Isradipine; Mibefradil; Muscle, Smooth; Stereoisomerism; Tetrahydronaphthalenes; Transfection; Verapamil

1995
The IVS6 segment of the L-type calcium channel is critical for the action of dihydropyridines and phenylalkylamines.
    The EMBO journal, 1996, May-15, Volume: 15, Issue:10

    Topics: 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester; Amino Acid Sequence; Benzimidazoles; Calcium; Calcium Channel Blockers; Calcium Channels; Calcium Channels, L-Type; Cell Line; Humans; Ion Channel Gating; Isradipine; Mibefradil; Molecular Sequence Data; Muscle Proteins; Protein Structure, Tertiary; Recombinant Fusion Proteins; Sequence Alignment; Structure-Activity Relationship; Tetrahydronaphthalenes; Transfection; Verapamil

1996
Opposite effects of a single IIIS5 mutation on phenylalkylamine and dihydropyridine interaction with L-type Ca2+ channels.
    The Journal of biological chemistry, 2004, Dec-31, Volume: 279, Issue:53

    Topics: Animals; Brain; Calcium; Calcium Channels; Calcium Channels, L-Type; Carrier Proteins; Cell Membrane; Dihydropyridines; DNA, Complementary; Dose-Response Relationship, Drug; Electrophysiology; Gallopamil; Homozygote; In Situ Hybridization; Isradipine; Kinetics; Mice; Mice, Transgenic; Microsomes; Models, Biological; Mutation; Oocytes; Protein Binding; Protein Structure, Tertiary; Recombinant Proteins; RNA, Complementary; Steroid Isomerases; Tyrosine; Verapamil; Xenopus laevis

2004