Page last updated: 2024-08-24

d 888 and dihydropyridines

d 888 has been researched along with dihydropyridines in 4 studies

Research

Studies (4)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's2 (50.00)18.2507
2000's2 (50.00)29.6817
2010's0 (0.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Benterbusch, R; Herberg, FW; Melzer, W; Thieleczek, R1
Bittar, EE; Nwoga, J1
Hoda, JC; Huber, IG; Sinnegger-Brauns, MJ; Striessnig, J; Walter-Bastl, D; Wappl-Kornherr, E1
Cheng, RCK; Tikhonov, DB; Zhorov, BS1

Other Studies

4 other study(ies) available for d 888 and dihydropyridines

ArticleYear
Excitation-contraction coupling in a pre-vertebrate twitch muscle: the myotomes of Branchiostoma lanceolatum.
    The Journal of membrane biology, 1992, Volume: 129, Issue:3

    Topics: Animals; Blotting, Western; Calcium; Calcium-Transporting ATPases; Cell Membrane; Cell Movement; Chordata, Nonvertebrate; Dihydropyridines; Membrane Potentials; Microsomes; Muscle Contraction; Nifedipine; Ryanodine; Verapamil

1992
An investigation of the sensitivity of the ouabain-insensitive sodium efflux in single barnacle muscle fibers to pentachlorophenol.
    Toxicology and applied pharmacology, 1991, Volume: 108, Issue:2

    Topics: Animals; Cadmium; Calcium; Calcium Channel Blockers; Cobalt; Cytosol; Dihydropyridines; Egtazic Acid; Gallic Acid; Hydrogen-Ion Concentration; Kinetics; Muscles; Osmolar Concentration; Ouabain; Pentachlorophenol; Ryanodine; Sodium; Stimulation, Chemical; Thoracica; Verapamil

1991
Opposite effects of a single IIIS5 mutation on phenylalkylamine and dihydropyridine interaction with L-type Ca2+ channels.
    The Journal of biological chemistry, 2004, Dec-31, Volume: 279, Issue:53

    Topics: Animals; Brain; Calcium; Calcium Channels; Calcium Channels, L-Type; Carrier Proteins; Cell Membrane; Dihydropyridines; DNA, Complementary; Dose-Response Relationship, Drug; Electrophysiology; Gallopamil; Homozygote; In Situ Hybridization; Isradipine; Kinetics; Mice; Mice, Transgenic; Microsomes; Models, Biological; Mutation; Oocytes; Protein Binding; Protein Structure, Tertiary; Recombinant Proteins; RNA, Complementary; Steroid Isomerases; Tyrosine; Verapamil; Xenopus laevis

2004
Structural model for phenylalkylamine binding to L-type calcium channels.
    The Journal of biological chemistry, 2009, Oct-09, Volume: 284, Issue:41

    Topics: Amino Acid Sequence; Binding Sites; Calcium Channel Blockers; Calcium Channels, L-Type; Computer Simulation; Dihydropyridines; Gallopamil; Models, Molecular; Molecular Sequence Data; Molecular Structure; Monte Carlo Method; Protein Structure, Tertiary; Sequence Alignment; Structure-Activity Relationship; Verapamil

2009