cytochromes-c1 has been researched along with 3-methoxy-2-(2-styrylphenyl)propenic-acid-methyl-ester* in 1 studies
1 other study(ies) available for cytochromes-c1 and 3-methoxy-2-(2-styrylphenyl)propenic-acid-methyl-ester
Article | Year |
---|---|
pH-induced intramolecular electron transfer between the iron-sulfur protein and cytochrome c(1) in bovine cytochrome bc(1) complex.
Structural analysis of the bc(1) complex suggests that the extra membrane domain of iron-sulfur protein (ISP) undergoes substantial movement during the catalytic cycle. Binding of Qo site inhibitors to this complex affects the mobility of ISP. Taking advantage of the difference in the pH dependence of the redox midpoint potentials of cytochrome c(1) and ISP, we have measured electron transfer between the [2Fe-2S] cluster and heme c(1) in native and inhibitor-treated partially reduced cytochrome bc(1) complexes. The rate of the pH-induced cytochrome c(1) reduction can be estimated by conventional stopped-flow techniques (t1/2, 1-2 ms), whereas the rate of cytochrome c(1) oxidation is too high for stopped-flow measurement. These results suggest that oxidized ISP has a higher mobility than reduced ISP and that the movement of reduced ISP may require an energy input from another component. In the 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole (UHDBT)-inhibited complex, the rate of cytochrome c(1) reduction is greatly decreased to a t1/2 of approximately 2.8 s. An even lower rate is observed with the stigmatellin-treated complex. These results support the idea that UHDBT and stigmatellin arrest the [2Fe-2S] cluster at a fixed position, 31 A from heme c(1), making electron transfer very slow. Topics: Animals; Cattle; Cytochromes c1; Electron Transport; Electron Transport Complex III; Heme; Hydrogen-Ion Concentration; Iron; Iron-Sulfur Proteins; Oxidation-Reduction; Polyenes; Stilbenes; Sulfur; Thiazoles; Time Factors | 2000 |