cytochrome-c-t has been researched along with ursodoxicoltaurine* in 7 studies
7 other study(ies) available for cytochrome-c-t and ursodoxicoltaurine
Article | Year |
---|---|
Endoplasmic reticulum stress inhibition protects steatotic and non-steatotic livers in partial hepatectomy under ischemia-reperfusion.
During partial hepatectomy, ischemia-reperfusion (I/R) is commonly applied in clinical practice to reduce blood flow. Steatotic livers show impaired regenerative response and reduced tolerance to hepatic injury. We examined the effects of tauroursodeoxycholic acid (TUDCA) and 4-phenyl butyric acid (PBA) in steatotic and non-steatotic livers during partial hepatectomy under I/R (PH+I/R). Their effects on the induction of unfolded protein response (UPR) and endoplasmic reticulum (ER) stress were also evaluated. We report that PBA, and especially TUDCA, reduced inflammation, apoptosis and necrosis, and improved liver regeneration in both liver types. Both compounds, especially TUDCA, protected both liver types against ER damage, as they reduced the activation of two of the three pathways of UPR (namely inositol-requiring enzyme and PKR-like ER kinase) and their target molecules caspase 12, c-Jun N-terminal kinase and C/EBP homologous protein-10. Only TUDCA, possibly mediated by extracellular signal-regulated kinase upregulation, inactivated glycogen synthase kinase-3β. This is turn, inactivated mitochondrial voltage-dependent anion channel, reduced cytochrome c release from the mitochondria and caspase 9 activation and protected both liver types against mitochondrial damage. These findings indicate that chemical chaperones, especially TUDCA, could protect steatotic and non-steatotic livers against injury and regeneration failure after PH+I/R. Topics: Activating Transcription Factor 6; Animals; Caspase 12; Cytochromes c; Endoplasmic Reticulum; Fatty Liver; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Heat-Shock Proteins; Hepatectomy; JNK Mitogen-Activated Protein Kinases; Liver; Mitochondria; Phenylbutyrates; Rats; Rats, Zucker; Reperfusion Injury; Taurochenodeoxycholic Acid; Unfolded Protein Response; Voltage-Dependent Anion Channels | 2010 |
Tauroursodeoxycholic acid prevents E22Q Alzheimer's Abeta toxicity in human cerebral endothelial cells.
The vasculotropic E22Q mutant of the amyloid-beta (Abeta) peptide is associated with hereditary cerebral hemorrhage with amyloidosis Dutch type. The cellular mechanism(s) of toxicity and nature of the AbetaE22Q toxic assemblies are not completely understood. Comparative assessment of structural parameters and cell death mechanisms elicited in primary human cerebral endothelial cells by AbetaE22Q and wild-type Abeta revealed that only AbetaE22Q triggered the Bax mitochondrial pathway of apoptosis. AbetaE22Q neither matched the fast oligomerization kinetics of Abeta42 nor reached its predominant beta-sheet structure, achieving a modest degree of oligomerization with a secondary structure that remained a mixture of beta and random conformations. The endogenous molecule tauroursodeoxycholic acid (TUDCA) was a strong modulator of AbetaE22Q-triggered apoptosis but did not significantly change the secondary structures and fibrillogenic propensities of Abeta peptides. These data dissociate the pro-apoptotic properties of Abeta peptides from their distinct mechanisms of aggregation/fibrillization in vitro, providing new perspectives for modulation of amyloid toxicity. Topics: Amyloid beta-Peptides; Apoptosis; bcl-2-Associated X Protein; Brain; Cells, Cultured; Cerebellum; Cytochromes c; Endothelial Cells; Endothelium, Vascular; Humans; Microvessels; Mitochondria; Mutation; Protein Binding; Protein Multimerization; Protein Structure, Secondary; Protein Transport; Taurochenodeoxycholic Acid | 2009 |
Differential regulation of cyclin D1 and cell death by bile acids in primary rat hepatocytes.
Ursodeoxycholic (UDCA) and tauroursodeoxycholic (TUDCA) acids modulate apoptosis and regulate cell-cycle effectors, including cyclin D1. In contrast, deoxycholic acid (DCA) induces cell death and cyclin D1. In this study, we explored the role of cyclin D1 in DCA-induced toxicity and further elucidated the antiapoptotic function of UDCA and TUDCA in primary rat hepatocytes. Cells were incubated with DCA and with or without UDCA or TUDCA for 8-30 h. In addition, hepatocytes were transfected with either an adenovirus expressing cyclin D1 or with a cyclin D1 reporter plasmid with or without bile acids. Finally, cells were cotransfected with short interfering RNA targeting p53. Unlike DCA, both UDCA and TUDCA reduced cyclin D1 expression and transcriptional activation, confirming our previous DNA microarray data. Furthermore, UDCA and TUDCA prevented DCA-induced cyclin D1 and cell death. Cyclin D1 overexpression increased DCA-induced Bax translocation, cytochrome c release, and apoptosis. However, UDCA and TUDCA were less efficient at decreasing cyclin D1 levels as well as DCA-induced changes with overexpression. Finally, after p53 silencing, the effects of cyclin D1 overexpression were almost completely abrogated, whereas UDCA and TUDCA cytoprotective potential was reestablished. In conclusion, cyclin D1 is a relevant player in modulating apoptosis by bile acids, in part through a p53-dependent mechanism. Topics: Animals; Apoptosis; bcl-2-Associated X Protein; Cyclin D1; Cytochromes c; Deoxycholic Acid; Gene Expression Regulation; Hepatocytes; Male; Protein Transport; Rats; Rats, Sprague-Dawley; Taurochenodeoxycholic Acid; Tumor Suppressor Protein p53; Ursodeoxycholic Acid | 2007 |
Tauroursodeoxycholic acid inhibits apoptosis induced by Z alpha-1 antitrypsin via inhibition of Bad.
Z alpha-1 antitrypsin (AAT) deficiency is a genetic disease associated with accumulation of misfolded AAT in the endoplasmic reticulum (ER) of hepatocytes. ZAAT-expressing cells display ER stress responses including nuclear factor kappaB activation and apoptosis. Using an in vitro model of ZAAT ER accumulation, we investigated the mechanism of ZAAT-mediated ER-induced apoptosis and evaluated methods to inhibit this process. Here we demonstrate that expression of ZAAT, but not normal MAAT, in HEK293 cells leads to cleavage and activation of caspase-4 and induces apoptosis that is characterized by activation of caspase-3 and caspase-7 and DNA fragmentation. Similar effects are also induced using the ER agonist thapsigargin. A caspase-4-specific short interfering RNA (siRNA) does not impair ZAAT-induced caspase-3/7 activation or cell death in these cells. However, inhibition studies performed using tauroursodeoxycholic acid (TUDCA) demonstrate its ability to inhibit caspase-4 and caspase-3/7 activation, mitochondrial cytochrome c release, and caspase-3 cleavage induced by ZAAT and to promote cell survival. The mechanism by which TUDCA (tauroursodeoxycholic acid) promotes cell survival in ZAAT-expressing cells involves phosphorylation and inactivation of the proapoptotic factor Bad. TUDCA is unable to rescue cells from apoptosis or phosphorylate Bad in the presence of LY294002, a selective P-I-3-kinase inhibitor.. These data show that caspase-4 is not essential for ZAAT-induced apoptosis in HEK293 cells and implicates P-I-3-kinase and Bad as potential therapeutic targets for the liver disease associated with ZAAT deficiency. Topics: alpha 1-Antitrypsin; Apoptosis; bcl-Associated Death Protein; Caspase 3; Caspases, Initiator; Cells, Cultured; Cytochromes c; Humans; Phosphatidylinositol 3-Kinases; Phosphorylation; Taurochenodeoxycholic Acid | 2007 |
Human hepatic mitochondria generate reactive oxygen species and undergo the permeability transition in response to hydrophobic bile acids.
Hydrophobic bile acids accumulate in the liver during cholestasis and are believed to cause hepatocellular necrosis and apoptosis in part through induction of the mitochondrial permeability transition (MPT) and the mitochondrial generation of oxidative stress. The purpose of this study was to determine if human hepatic mitochondria respond to bile acids in this manner.. The MPT was measured spectrophotometrically and morphologically in normal human liver mitochondria exposed to glycochenodeoxycholic acid (GCDC) with and without cyclosporin A, an inhibitor of the MPT, antioxidants, and tauroursodeoxycholic acid (TUDC). Hydroperoxide generation was measured by dichlorofluorescein fluorescence. Cytochrome c and apoptosis-inducing factor were assessed by immunoblotting.. GCDC induced the MPT in a dose-dependent manner, which was inhibited by cyclosporin A, alpha-tocopherol, beta-carotene, idebenone, and TUDC. GCDC stimulated reactive oxygen species generation and release of cytochrome c and apoptosis-inducing factor, which were significantly inhibited by the antioxidants, cyclosporin A, and TUDC.. Mitochondrial pathways of cell death are stimulated in human hepatic mitochondria exposed to GCDC consistent with the role of mitochondrial dysfunction in the pathogenesis of cholestatic liver injury. These results parallel those reported in rodents, supporting the extrapolation of mechanistic studies of bile acid toxicity from rodent to humans. Topics: Antioxidants; Apoptosis; Bile Acids and Salts; Cyclosporine; Cytochromes c; Dose-Response Relationship, Drug; Glycochenodeoxycholic Acid; Hepatocytes; Humans; Hydrogen Peroxide; Ion Channels; Mitochondria, Liver; Mitochondrial Membrane Transport Proteins; Mitochondrial Permeability Transition Pore; Reactive Oxygen Species; Spectrophotometry; Taurochenodeoxycholic Acid | 2005 |
Role of mitochondrial dysfunction in combined bile acid-induced cytotoxicity: the switch between apoptosis and necrosis.
The goal of this investigation was to determine whether chenodeoxycholic acid (CDCA)-induced apoptosis is prevented by ursodeoxycholic acid (UDCA) or tauroursodeoxycholic acid (TUDC) and to characterize the involvement of mitochondria in the process. Cultured human HepG2 cells were treated in a dose- and time-dependent protocol in order to establish a sufficiently low exposure to CDCA that causes apoptosis but not necrosis. Low-dose CDCA induced an S-phase block and G2 arrest of the cell cycle, as determined by flow cytometry. As a result, cell proliferation was inhibited. CDCA-induced apoptosis, as determined by fluorescence microscopy of Hoechst 33342-stained nuclei, was evident upon coincubation with TUDC. Additionally, after exposure to UDCA plus CDCA, the cell membrane was permeable to fluorescent dyes. Caspase-9-like activity, poly(ADP-ribose) polymerase (PARP) cleavage, and extensive DNA fragmentation were detected in CDCA-exposed cells and in cells coincubated with TUDC, but not UDCA. CDCA caused a decrease in mitochondrial membrane potential and depletion of ATP, both of which were potentiated by UDCA but not TUDC. The results suggest that UDCA potentiates CDCA cytotoxicity, probably at the level of induction of the mitochondrial permeability transition (MPT). Consequently, as suggested by the lack of the main hallmarks of the apoptotic pathway, in the presence of UDCA, CDCA-induced apoptosis is not properly executed but degenerates into necrosis. Topics: Adenosine Triphosphate; Apoptosis; Bile Acids and Salts; Bromodeoxyuridine; Caspase 9; Caspases; Cell Cycle; Cell Division; Cell Line; Cell Membrane Permeability; Cell Survival; Chenodeoxycholic Acid; Chromatin; Cytochromes c; DNA; DNA Fragmentation; Dose-Response Relationship, Drug; Drug Synergism; Humans; Mitochondrial Diseases; Necrosis; Poly(ADP-ribose) Polymerases; Taurochenodeoxycholic Acid; Time Factors; Tubulin; Ursodeoxycholic Acid | 2004 |
[Effect of Tauroursodeoxycholic acid on cytochrome C-mediated apoptosis in HepG2 cells].
To investigate the effect of Tauroursodeoxycholic acid (TUDCA) on Taurodeoxycholic acid (TDCA)-induced HepG2 cell apoptosis and to clarify the molecular mechanism of its anti-apoptosis effect of TUDCA.. Morphologic evaluation of apoptotic cells was performed by Hoechst 33258 staining and electron microscope. DNA fragment was detected by electrophoresis on 1.5% agarose gels. Apoptosis rate was measured by flow cytometry using PI dye. Following incubation of HepG2 cells either with TDCA alone, or coincubation with TUDCA and TDCA, the releasing level of cytochrome c from mitochondria into cytosol was determined by western blot, also the activity of caspase-3, 8, 9.. Incubating the cells with 400 micromol/L TDCA for 12 h induced the cells apoptosis significantly. The apoptotic rate decreased from 50.35% +/- 2.20% to 13.78% +/- 0.84% after coincubation with TUDCA, and this anti-apoptotic effect of TUDCA was confirmed by morphological and DNA ladder detection. TUDCA significantly inhibited the release of cytochrome C from mitochondria into cytosol, and the activity of caspase-9, 3 (t > or = 13.00, P < 0.01), especially at 12 h, caspase-3 activity decreased by 54.9% (t = 16.88, P < 0.01) and 52.5%, however it had no obvious effect on the activity of caspase-8 (t = 1.94, P > 0.05).. TUDCA prevents HepG2 cells apoptosis induced by TDCA through modulating mitochondrial membrane stability, inhibiting the release of cytochrome c and the activation of procaspase-9 and 3. Anti-apoptotic mechanism of TUDCA may be considered to be one of the most important reasons that TUDCA exerts significant efficacy in the treatment of cholestatic liver diseases. Topics: Apoptosis; Carcinoma, Hepatocellular; Caspase 3; Caspase 9; Caspases; Cytochromes c; Humans; Liver Neoplasms; Taurochenodeoxycholic Acid; Taurodeoxycholic Acid; Tumor Cells, Cultured | 2003 |