cytochrome-c-t and sinomenine

cytochrome-c-t has been researched along with sinomenine* in 2 studies

Other Studies

2 other study(ies) available for cytochrome-c-t and sinomenine

ArticleYear
Sinomenine reduces neuronal cell apoptosis in mice after traumatic brain injury via its effect on mitochondrial pathway.
    Drug design, development and therapy, 2018, Volume: 12

    Sinomenine (SIN) has been shown to have protective effects against brain damage following traumatic brain injury (TBI). However, the mechanisms and its role in these effects remain unclear. This study was conducted to investigate the potential mechanisms of the protective effects of SIN.. The weight-drop model of TBI in Institute of Cancer Research (ICR) mice were treated with SIN or a vehicle via intraperitoneal administration 30 min after TBI. All mice were euthanized 24 h after TBI and after neurological scoring, a series of tests were performed, including brain water content and neuronal cell death in the cerebral cortex.. The level of cytochrome. SIN protected neuronal cells by protecting them against apoptosis via mechanisms that involve the mitochondria following TBI.

    Topics: Animals; Apoptosis; Apoptosis Regulatory Proteins; Brain Edema; Brain Injuries, Traumatic; Cerebral Cortex; Cytochromes c; Cytoprotection; Disease Models, Animal; Dose-Response Relationship, Drug; Glutathione Peroxidase; Male; Malondialdehyde; Mice, Inbred ICR; Mitochondria; Morphinans; Nerve Degeneration; Neurons; Neuroprotective Agents; Oxidative Stress; Signal Transduction; Superoxide Dismutase-1

2018
Sinomenine hydrochloride inhibits human hepatocellular carcinoma cell growth in vitro and in vivo: involvement of cell cycle arrest and apoptosis induction.
    International journal of oncology, 2013, Volume: 42, Issue:1

    Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. However, therapies against HCC to date have not been completely effective. Sinomenine hydrochloride (SH), an anti‑arthritis drug applied in clinical practice, has been reported to have in vitro anti‑neoplastic activity in various cancer cells. Whether SH inhibits HCC remains unknown. For this purpose, in this study, MTT assay was used to determine cell growth. Flow cytometry, Hoechst staining, DNA fragmentation, western blot analysis, immunohistochemisty and TUNEL staining were performed to investigate the mechanisms involved. The in vivo activity of SH was determined using a mouse xenograft model. SH inhibited the growth of various types of human HCC cells in vitro. We found that SH promoted cell cycle arrest in the G1 phase and sub‑G1 formation, associated with the increased p21/WAF1/Cip1 expression. Additionally, SH induced caspase‑dependent apoptosis, which involved the disruption of mitochondrial membrane potential, the increased release of cytochrome c and Omi/HtrA2 from the mitochondria into the cytoplasm, the downregulation of Bcl‑2 and the upregulation of Bax, the activation of a caspase cascade (caspase‑8, -10, -9 and -3) and PARP, as well as the decreased expression of survivin. The SH‑suppressed growth of human HCC xenografts in vivo occurred due to the decrease in proliferation and the induction of apoptosis, implicating the activation of caspase‑3, the upregulation of p21 and the downregulation of survivin. These findings suggest that SH exhibits anticancer efficacy in vitro and in vivo involving cell cycle and caspase‑dependent apoptosis and may serve as a potential drug candidate against HCC.

    Topics: Animals; Apoptosis; bcl-2-Associated X Protein; Blotting, Western; Carcinoma, Hepatocellular; Caspases; Cell Cycle Checkpoints; Cell Proliferation; Cyclin-Dependent Kinase Inhibitor p21; Cytochromes c; Flow Cytometry; Humans; In Vitro Techniques; Liver Neoplasms; Male; Membrane Potential, Mitochondrial; Mice; Mice, Inbred BALB C; Mice, Nude; Morphinans; Poly(ADP-ribose) Polymerases; Proto-Oncogene Proteins c-bcl-2; Tumor Cells, Cultured

2013