cytochrome-c-t and pregna-4-17-diene-3-16-dione

cytochrome-c-t has been researched along with pregna-4-17-diene-3-16-dione* in 4 studies

Other Studies

4 other study(ies) available for cytochrome-c-t and pregna-4-17-diene-3-16-dione

ArticleYear
[Farnesoid-X-receptor blockade reduces myocardial reperfusion injury in cholesterol-fed apolipoprotein E knockout mice].
    Zhonghua xin xue guan bing za zhi, 2013, Volume: 41, Issue:8

    To investigate the effect of farnesoid-X-receptor (FXR) antagonist Z-guggulsterone in an in vivo high-fat fed apolipoprotein E knockout (ApoE(-/-)) mice model of myocardial ischemia/reperfusion (I/R).. Male ApoE(-/-) mice were randomly divided into three groups: standard ApoE(-/-) group (fed with standard mouse diet for 12 weeks before myocardial I/R procedure, n = 18), high-fat ApoE(-/-) group (fed with high-fat mouse diet for 12 weeks before myocardial I/R procedure, n = 22), and high-fat ApoE(-/-) + FXR antagonist group(fed with high-fat mouse diet for 12 weeks and received FXR antagonist Z-Guggulsterone 30 minutes before myocardial I/R procedure, n = 17). The expression of FXR was detected by real-time quantitative-PCR. Myocardial infarct size was determined by Evans blue/TTC double staining methods. Myocardial apoptosis was determined by in situ TUNEL technique. Markers of the mitochondrial-mediated apoptotic pathway (cytochrome c release, caspase-9 activity, and BAX and BCL-2 levels), endoplasmic reticulum stress apoptotic pathway (caspase-12 activity and CHOP level), and death receptor apoptotic pathway (caspase-8 activity, and Fas and FasL levels) were also measured.. FXR expression (3.7-fold higher, P < 0.01), myocardial infarct size [(62.1 ± 7.0)% vs. (33.8 ± 5.8)%, P < 0.01] and myocardial apoptosis index[ (36.8 ± 5.7)% vs. (17.2 ± 3.8)%, P < 0.01]were all significantly higher in high-fat ApoE(-/-) group than those in standard ApoE(-/-) group. Compared with high-fat ApoE(-/-) group, myocardial infarct size [(24.4 ± 4.7)% vs. (62.1 ± 7.0)%, P < 0.01] and myocardial apoptosis index [(13.8 ± 2.7)% vs. (36.8 ± 5.7)%, P < 0.01] were significantly reduced in high-fat ApoE(-/-) + FXR antagonist group. Moreover, levels of mitochondrial-mediated apoptotic pathway markers (cytochrome c release, caspase-9 activity, and BAX/BCL-2 levels) and endoplasmic reticulum stress apoptotic pathway markers (caspase-12 activity and CHOP level) were significantly lower in high-fat ApoE(-/-) + FXR antagonist group than those in high-fat ApoE(-/-) group (all P < 0.01). Levels of death receptor apoptotic pathway markers (caspase-8 activity, and Fas and FasL levels) were similar between high-fat ApoE(-/-) group and high-fat ApoE(-/-) + FXR antagonist group.. FXR antagonist alleviates myocardial reperfusion injury in cholesterol-fed ApoE(-/-) mice via inhibition of the mitochondrial-mediated and endoplasmic-reticulum stress pathway.

    Topics: Animals; Apolipoproteins E; Apoptosis; bcl-2-Associated X Protein; Caspase 9; Cholesterol, Dietary; Cytochromes c; Disease Models, Animal; Endoplasmic Reticulum Stress; Male; Mice; Mice, Knockout; Myocardial Reperfusion Injury; Pregnenediones; Proto-Oncogene Proteins c-bcl-2; Receptors, Cytoplasmic and Nuclear

2013
Cardiomyocyte-expressed farnesoid-X-receptor is a novel apoptosis mediator and contributes to myocardial ischaemia/reperfusion injury.
    European heart journal, 2013, Volume: 34, Issue:24

    Emerging evidence indicates that nuclear receptors play a critical regulatory role in cardiovascular physiology/pathology. Recently, farnesoid-X-receptor (FXR), a member of the metabolic nuclear receptor superfamily, has been demonstrated to be expressed in vascular cells, with important roles in vascular physiology/pathology. However, the potential cardiac function of FXR remains unclear. We investigated the cardiac expression and biological function of FXR.. Farnesoid-X-receptor was detected in both isolated neonatal rat cardiac myocytes and fibroblasts. Natural and synthetic FXR agonists upregulated cardiac FXR expression, stimulated myocyte apoptosis, and reduced myocyte viability dose- and time-dependently. Mechanistic studies demonstrated that FXR agonists disrupted mitochondria, characterized by mitochondrial permeability transition pores activation, mitochondrial potential dissipation, cytochrome c release, and both caspase-9 and -3 activation. Such mitochondrial apoptotic responses were abolished by siRNA-mediated silencing of endogenous FXR or pharmacological inhibition of mitochondrial death signalling. Furthermore, low levels of FXR were detected in the adult mouse heart, with significant (∼2.0-fold) upregulation after myocardial ischaemia/reperfusion (MI/R). Pharmacological inhibition or genetic ablation of FXR significantly reduced myocardial apoptosis by 29.0-53.4%, decreased infarct size by 23.4-49.7%, and improved cardiac function in ischaemic/reperfused myocardium.. These results demonstrate that nuclear receptor FXR acts as a novel functional receptor in cardiac tissue, regulates apoptosis in cardiomyocytes, and contributes to MI/R injury.

    Topics: Animals; Apoptosis; bcl-2-Associated X Protein; Caspase 3; Caspase 9; Cell Survival; Chenodeoxycholic Acid; Cyclosporine; Cytochromes c; Enzyme Inhibitors; Isoxazoles; Membrane Potential, Mitochondrial; Mice; Mice, Inbred C57BL; Mice, Knockout; Mitochondria, Heart; Myocardial Reperfusion Injury; Myocytes, Cardiac; Pregnenediones; Proto-Oncogene Proteins c-bcl-2; Rats; Reactive Oxygen Species; Receptors, Cytoplasmic and Nuclear; RNA, Small Interfering

2013
Guggulsterone inhibits adipocyte differentiation and induces apoptosis in 3T3-L1 cells.
    Obesity (Silver Spring, Md.), 2008, Volume: 16, Issue:1

    To determine the effects of guggulsterone (GS), the active substance in guggulipid, on apoptosis, adipogenesis, and lipolysis using 3T3-L1 cells.. For apoptosis and lipolysis experiments, mature adipocytes were treated with GS isomers. Viability, apoptosis, and caspase 3/7 activation were quantified using MTS, enzyme-linked immunosorbent assay (ELISA), caspase-Glo 3/7 activity assay, respectively. The expression of cytochrome c was demonstrated by western blot. Lipolysis was quantified by measuring the release of glycerol. For adipogenesis experiments, postconfluent preadipocytes were incubated with GS isomers for up to 6 days during maturation. Adipogenesis was quantified by measuring lipid content using Nile Red dye. Western blot was also used to demonstrate the adipocyte-specific transcription factors peroxisome proliferator-activated receptor gamma2 (PPARgamma2), CCAAT/enhancer binding protein alpha (C/EBPalpha), and C/EBPbeta.. In mature adipocytes cis-GS decreased viability, whereas the trans-GS isomer had little effect. Both isomers caused dose-dependent increases in apoptosis and cis-GS was more effective than trans-GS in inducing apoptosis. cis- and trans-GS also increased caspase-3 activity and release of cytochrome c from mitochondria. In maturing preadipocytes, both isomers were equally effective in reducing lipid content. The adipocyte-specific transcription factors PPARgamma2, C/EBPalpha, and C/EBPbeta were downregulated after treatment with cis-GS during the maturation period. Furthermore, cis-GS increased basal lipolysis of mature adipocytes, but trans-GS had no effect.. These results indicate that GS isomers may exert antiobesity effects by inhibiting differentiation of preadipocytes, and by inducing apoptosis and promoting lipolysis of mature adipocytes. The cis-GS isomer was more potent than the trans-GS isomer in inducing apoptosis and lipolysis in mature adipocytes.

    Topics: 3T3-L1 Cells; Adipocytes; Animals; Apoptosis; Caspase 3; Caspase 7; Cell Differentiation; Cell Survival; Cytochromes c; Extracellular Signal-Regulated MAP Kinases; Lipolysis; Mice; Phosphorylation; PPAR gamma; Pregnenediones; Triglycerides

2008
Enhanced pro-apoptotic and anti-adipogenic effects of genistein plus guggulsterone in 3T3-L1 adipocytes.
    BioFactors (Oxford, England), 2007, Volume: 30, Issue:3

    Genistein (G), an isoflavone, and guggulsterone (GS), the active substance in guggulipid, have been reported to possess therapeutic effects for obesity. In the present study, we investigated the effects of combinations of G plus GS on apoptosis and adipogenesis in 3T3-L1 cells. In mature adipocytes, G and GS individually caused apoptosis, but combination of G plus GS significantly increased apoptosis, more than either compound alone. Furthermore, G plus GS caused a greater increase in procaspase-3 cleavage, Bax expression, cytochrome c release, and proteolytic cleavage of PARP than either compound alone. In maturing preadipocytes G and GS each suppressed lipid accumulation, but the combination potentiated the inhibition of lipid accumulation. These results suggest that combination of genistein and guggulsterone may exert anti-obesity effects by inhibiting adipogenesis and inducing apoptosis in adipocytes.

    Topics: 3T3-L1 Cells; Adipocytes; Adipogenesis; Animals; Apoptosis; bcl-2-Associated X Protein; Blotting, Western; Caspase 3; Cell Survival; Cytochromes c; Drug Synergism; Genistein; Lipid Metabolism; Mice; Poly (ADP-Ribose) Polymerase-1; Poly(ADP-ribose) Polymerases; Pregnenediones

2007