cytochrome-c-t and pheophorbide-a

cytochrome-c-t has been researched along with pheophorbide-a* in 2 studies

Other Studies

2 other study(ies) available for cytochrome-c-t and pheophorbide-a

ArticleYear
Photodynamic therapy of Pheophorbide a inhibits the proliferation of human breast tumour via both caspase-dependent and -independent apoptotic pathways in in vitro and in vivo models.
    Phytotherapy research : PTR, 2012, Volume: 26, Issue:5

    Breast cancer is conventionally treated by surgery and radiotherapy, with adjuvant chemotherapy and hormonotherapy as supplementary treatments. However, such treatments are associated with adverse side effects and drug resistance. In this study, Pheophorbide a (Pa), a photosensitizer isolated from Scutelleria barbata, was analysed for its antiproliferative effect on human breast tumour cells. The IC (inhibitory concentration)(50) of the combined treatment of Pa and photodynamic therapy (Pa-PDT) on human breast tumour MCF-7 cells was 0.5 µm. Mechanistic studies in MCF-7 cells demonstrated that Pa was localized in the mitochondria, and reactive oxygen species were found to be released after Pa-PDT. Apoptosis was the major mechanism responsible for the tumour cell death, and mitochondrial membrane depolarization and cytochrome c release highlighted the role of mitochondria in the apoptotic mechanism. Up-regulation of tumour suppressor protein p53, cleavage of caspase-9 and poly (ADP-ribose) polymerase suggested that the caspase-dependent pathway was induced, while the release of apoptosis-inducing factors demonstrated that the apoptosis was also mediated by the caspase-independent mechanism. In vivo study using the mouse xenograft model showed a significant inhibition of MCF-7 tumour growth by Pa-PDT. Together, the results of this study provide a basis for understanding and developing Pa-PDT as a cure for breast cancer.

    Topics: Animals; Apoptosis; Breast Neoplasms; Caspase 9; Cell Cycle Checkpoints; Cell Line, Tumor; Cell Proliferation; Cell Survival; Chlorophyll; Cytochromes c; DNA Fragmentation; Female; Humans; Membrane Potential, Mitochondrial; Mice; Mice, Inbred BALB C; Mice, Nude; Photochemotherapy; Photosensitizing Agents; Plant Extracts; Poly(ADP-ribose) Polymerases; Reactive Oxygen Species; Scutellaria; Tumor Suppressor Protein p53; Xenograft Model Antitumor Assays

2012
Pheophorbide a-mediated photodynamic therapy induces apoptotic cell death in murine oral squamous cell carcinoma in vitro and in vivo.
    Oncology reports, 2012, Volume: 27, Issue:6

    Photodynamic therapy (PDT) with several photosensitizers is a promising modality for the treatment of cancer. In this study, the therapeutic effect of PDT using the synthetic photosensitizer pheophorbide a (Pa-PDT) was examined in AT-84 murine oral squamous cell carcinoma (OSCC) cells. The MTT assay revealed that Pa-PDT induced cell growth inhibition in a dose- and time-dependent manner. Pa-PDT treatment significantly induced intracellular ROS generation, which is critical for cell death induced by Pa-PDT. Cell cycle analysis showed the increased sub-G1 proportion of cells in Pa-PDT-treated cells. Induction of apoptotic cell death was confirmed by DAPI staining and the reduction of mitochondrial membrane potential (ΔΨm) on Pa-PDT-treated cells. The changes in apoptosis-related molecules were next examined using western blotting. Cytochrome c release and cleavage of caspase-3 and PAPR were observed in AT-84 cells, whereas Bcl-2 protein levels were decreased. To determine the therapeutic effect of Pa-PDT in vivo, a murine OSCC animal model was used. Treatment of mice with Pa-PDT significantly inhibited tumor growth, especially PDT with Pa intravenous administration (i.v. Pa-PDT), and increased proliferative cell nuclear antigen (PCNA) levels and TUNEL-stained apoptotic cells compared to vehicle-treated controls. The data demonstrate that the in vitro effects of Pa-PDT on the inhibition of tumor cell proliferation and induction of apoptosis correlate to the anticancer activity of Pa-PDT in vivo. Our findings suggest the therapeutic potential of Pa-PDT in OSCC.

    Topics: Animals; Apoptosis; Carcinoma, Squamous Cell; Caspase 3; Cell Line, Tumor; Cell Proliferation; Chlorophyll; Cytochromes c; Male; Membrane Potential, Mitochondrial; Mice; Mice, Inbred C3H; Mitochondria; Mouth Neoplasms; Photochemotherapy; Photosensitizing Agents; Proto-Oncogene Proteins c-bcl-2; Reactive Oxygen Species

2012