cytochrome-c-t has been researched along with oblimersen* in 6 studies
6 other study(ies) available for cytochrome-c-t and oblimersen
Article | Year |
---|---|
Phosphorothioate oligonucleotides reduce mitochondrial outer membrane permeability to ADP.
G3139, an antisense Bcl-2 phosphorothioate oligodeoxyribonucleotide, induces apoptosis in melanoma and other cancer cells. This apoptosis happens before and in the absence of the downregulation of Bcl-2 and thus seems to be Bcl-2-independent. Binding of G3139 to mitochondria and its ability to close voltage-dependent anion-selective channel (VDAC) have led to the hypothesis that G3139 acts, in part, by interacting with VDAC channels in the mitochondrial outer membrane (21). In this study, we demonstrate that G3139 is able to reduce the mitochondrial outer membrane permeability to ADP by a factor of 6 or 7 with a K(i) between 0.2 and 0.5 microM. Because VDAC is responsible for this permeability, this result strengthens the aforesaid hypothesis. Other mitochondrial respiration components are not affected by [G3139] up to 1 microM. Higher levels begin to inhibit respiration rates, decrease light scattering and increase uncoupled respiration. These results agree with accumulating evidence that VDAC closure favors cytochrome c release. The speed of this effect (within 10 min) places it early in the apoptotic cascade with cytochrome c release occurring at later times. Other phosphorothioate oligonucleotides are also able to induce VDAC closure, and there is some length dependence. The phosphorothioate linkages are required to induce the reduction of outer membrane permeability. At levels below 1 microM, phosphorothioate oligonucleotides are the first specific tools to restrict mitochondrial outer membrane permeability. Topics: Adenosine Diphosphate; Animals; Cell Line, Tumor; Cytochromes c; Humans; In Vitro Techniques; Ion Channel Gating; Liposomes; Mitochondria, Liver; Mitochondrial Membranes; Mitochondrial Swelling; Oligonucleotides, Antisense; Permeability; Phospholipids; Proto-Oncogene Proteins c-bcl-2; Rats; Thionucleotides; Voltage-Dependent Anion Channels | 2007 |
A pharmacologic target of G3139 in melanoma cells may be the mitochondrial VDAC.
G3139, an 18-mer phosphorothioate antisense oligonucleotide targeted to the initiation codon region of the Bcl-2 mRNA, can induce caspase-dependent apoptosis via the intrinsic mitochondrial pathway in 518A2 and other melanoma cells. G3139-mediated apoptosis appears to be independent of its ability to down-regulate the expression of Bcl-2 protein, because the release of mitochondrial cytochrome c precedes in time the down-regulation of Bcl-2 protein expression. In this study, we demonstrate the ability of G3139 and other phosphorothioate oligonucleotides to bind directly to mitochondria isolated from 518A2 cells. Furthermore, we show that this interaction leads to the release of cytochrome c in the absence of a mitochondrial membrane permeability transition. Our data further demonstrate that there is an interaction between G3139 and VDAC, a protein that can facilitate the physiologic exchange of ATP and ADP across the outer mitochondrial membrane. Evidence from the electrophysiologic evaluation of VDAC channels reconstituted into phospholipid membranes demonstrates that G3139 is capable of producing greatly diminished channel conductance, indicating a closed state of the VDAC. This effect is oligomer length-dependent, and the ability of phosphorothioate homopolymers of thymidine of variable lengths to cause the release of cytochrome c from isolated mitochondria of 518A2 melanoma cells can be correlated with their ability to interact with VDAC. Because it has been suggested that the closure of VDAC leads to the opening of another outer mitochondrial membrane channel through which cytochrome c can transit, thus initiating apoptosis, it appears that VDAC may be an important pharmacologic target of G3139. Topics: Base Sequence; Cell Line, Tumor; Cytochromes c; Humans; Ion Channel Gating; Melanoma; Mitochondria; Mitochondrial Membranes; Oligonucleotides; Phosphates; Thionucleotides; Voltage-Dependent Anion Channels | 2006 |
Bcl-2 protein in 518A2 melanoma cells in vivo and in vitro.
Bcl-2 is an apoptotic protein that is highly expressed in advanced melanoma. Several strategies have been employed to target the expression of this protein, including G3139, an 18-mer phosphorothioate oligodeoxyribonucleotide targeted to the initiation region of the Bcl-2 mRNA. This compound has recently completed phase III global clinical evaluation, but the function of Bcl-2 as a target in melanoma has not been completely clarified. To help resolve this question, we have permanently and stably down-regulated Bcl-2 protein and mRNA expression in 518A2 cells by two different technologies and evaluated the resulting clones both in vitro and in vivo.. 518A2 melanoma cells were transfected with plasmids engineered to produce either a single-stranded antisense oligonucleotide targeted to the initiation codon region of the Bcl-2 mRNA or a short hairpin RNA also targeted to the Bcl-2 mRNA. In vitro growth, the apoptotic response to G3139, and the G3139-induced release of cytochrome c from isolated mitochondria were evaluated. Cells were then xenografted into severe combined immunodeficient mice and tumor growth was measured.. In vitro, down-regulation of Bcl-2 expression by either method produced no change either in the rate of growth or in sensitivity to standard cytotoxic chemotherapeutic agents. Likewise, the induction of apoptosis by G3139 was entirely Bcl-2 independent. In addition, the G3139-induced release from isolated mitochondria was also relatively independent of Bcl-2 expression. However, when xenografted into severe combined immunodeficient mice, cells with silenced Bcl-2, using either technology, either failed to grow at all or grew to tumors of low volume and then completely regressed. In contrast, control cells with "normal" levels of Bcl-2 protein expression expanded to be large, necrotic tumors.. The presence of Bcl-2 protein profoundly affects the ability of 518A2 melanoma cells to grow as human tumor xenografts in severe combined immunodeficient mice. The in vivo role of Bcl-2 in melanoma cells thus differs significantly from its in vitro role, and these experiments further suggest that Bcl-2 may be an important therapeutic target even in tumors that do not contain the t14:18 translocation. Topics: Animals; Apoptosis; Base Sequence; Cytochromes c; DNA, Antisense; Down-Regulation; Gene Silencing; Humans; Melanoma; Mice; Mice, Inbred ICR; Mice, SCID; Mitochondria; Molecular Sequence Data; Proto-Oncogene Proteins c-bcl-2; RNA, Messenger; RNA, Small Interfering; Thionucleotides; Xenograft Model Antitumor Assays | 2006 |
Phosphorothioate oligodeoxynucleotides and G3139 induce apoptosis in 518A2 melanoma cells.
In a previous study, we showed that G3139, an antisense phosphorothioate oligonucleotide that down-regulates the expression of Bcl-2 protein, did not cause chemosensitization of 518A2 melanoma cells. In this work, we show that G3139, and the 2-base mismatch, G4126, can initiate apoptosis in this and other melanoma cell lines as shown by increased cell surface Annexin V expression, typical nuclear phenotypic changes as assessed by 4',6-diamidino-2-phenylindole staining, activation of caspase-3 (but not caspase-8) and Bid, appearance of DEVDase (but not IETDase) activity, and cleavage of poly(ADP-ribose)-polymerase 1. Depolarization of the mitochondrial membrane occurs as a relatively late event. All of these processes seem to be substantially, but perhaps not totally, Bcl-2 independent as shown by experiments employing an anti-Bcl-2 small interfering RNA, which as shown previously down-regulated Bcl-2 protein expression but did not produce apoptosis or chemosensitization in melanoma cells. In fact, these G3139-induced molecular events were not dramatically altered in cells that forcibly overexpressed high levels of Bcl-2 protein. Addition of irreversible caspase inhibitors (e.g., the pan-caspase inhibitor zVAD-fmk) to G3139-treated cells almost completely blocked cytotoxicity. Examination of the time course of the appearance of caspase-3 and cleaved poly(ADP-ribose)-polymerase 1 showed that this could be correlated with the release of cytochrome c from the mitochondria, an event that begins only approximately 4 hours after the end of the oligonucleotide/LipofectAMINE 2000 5-hour transfection period. Thus, both G3139 and cytotoxic chemotherapy activate the intrinsic pathway of apoptosis in these cells, although Bcl-2 expression does not seem to contribute strongly to chemoresistance. These findings suggest that the attainment of G3139-induced chemosensitization in these cells will be difficult. Topics: Antineoplastic Agents; Apoptosis; BH3 Interacting Domain Death Agonist Protein; Carrier Proteins; Caspase 3; Caspase Inhibitors; Caspases; Cell Line, Tumor; Cytochromes c; Cytoplasm; Drug Resistance, Neoplasm; Enzyme Activation; Humans; Lipids; Melanoma; Membrane Potentials; Mitochondria; Oligodeoxyribonucleotides, Antisense; Proto-Oncogene Proteins c-bcl-2; Thionucleotides; Transfection | 2005 |
Bcl-2 antisense oligonucleotide overcomes resistance to E1A gene therapy in a low HER2-expressing ovarian cancer xenograft model.
We are currently conducting clinical trials of E1A gene therapy for patients with ovarian cancer. The adenovirus type 5 E1A gene suppresses growth of ovarian cancer cells that overexpress HER-2/neu (HER2) and growth of some--but not all--that express low HER2. In HER2-overexpressing cells, suppression by E1A is predominantly by down-regulation of HER2, but the mechanism in low HER2-expressing cells is not fully understood. The adenoviral E1B protein has sequential and functional homology to Bcl-2 and prolongs the viability of adenovirus host cells by inhibiting E1A-induced apoptosis. Bcl-2 is overexpressed in ovarian cancer and participates in chemoresistance; we hypothesized that Bcl-2 inhibits E1A-induced apoptosis leading to resistance to E1A gene therapy. E1A suppressed colony formation of ovarian cancer cells that express low levels of Bcl-2 and HER2 (OVCAR-3 and OVCA 433), but enhanced colony formation in low HER2-, high Bcl-2-expressing ovarian cancer cells (2774 and HEY). Treating 2774 or HEY cells with antisense oligonucleotide Bcl-2 (Bcl-2-ASO) did not reduce cell viability. E1A combined with Bcl-2-ASO led to significant decreases in cell viability resulting from increased apoptosis relative to cells treated with E1A alone (P < 0.05). The increase in apoptosis was partly due to cytochrome c release and subsequently caspase-9 activation by Bcl-2-ASO. Finally, in an ovarian cancer xenograft model, treatment with Bcl-2-ASO did not prolong survival, but E1A plus Bcl-2-ASO did (P < 0.001). In conclusion, ovarian tumors overexpressing Bcl-2 may not respond well to E1A gene therapy, but treatment with a combination of E1A and Bcl-2-ASO may overcome this resistance. Topics: Adenovirus E1B Proteins; Animals; Apoptosis; Caspase 9; Caspases; Cell Line, Tumor; Cytochromes c; Enzyme Activation; Female; Genetic Therapy; Humans; Mice; Mice, Nude; Oligonucleotides, Antisense; Ovarian Neoplasms; Receptor, ErbB-2; Thionucleotides; Transfection; Xenograft Model Antitumor Assays | 2005 |
Targeting mitochondria emerges as therapeutic strategy.
Topics: Animals; Antineoplastic Agents; Apoptosis; Biphenyl Compounds; Cytochromes c; Drugs, Investigational; Glycolysis; Hexanones; Humans; Mitochondria; Mitochondrial Proton-Translocating ATPases; Neoplasms; Nitrophenols; Piperazines; Proto-Oncogene Proteins c-bcl-2; Sulfonamides; Thionucleotides | 2005 |