cytochrome-c-t has been researched along with myricetin* in 6 studies
6 other study(ies) available for cytochrome-c-t and myricetin
Article | Year |
---|---|
Myricetin enhances on apoptosis induced by serum deprivation in PC12 cells mediated by mitochondrial signaling pathway.
Polyphenols have many beneficial effects and an effective disease therapeutic auxiliary drug. Previously, myricetin, a polyphenol, had been reported to possess various biological effects on human physiology. However, mechanism of myricetin on apoptosis induced in PC12 cells is still unclear. PC12 cells were treated with myricetin in two concentration levels comprising 0.1 and 1 μM under serum-free condition. As a result, morphological changes were observed using trypan blue assay. DNA fragmentation was determined by DNA ladder assay to evaluate DNA damage levels. Western blotting results showed that cytosolic cytochrome c which was released from mitochondria. Subsequently, tumor suppressor gene p53, pro-apoptotic and anti-apoptotic Bcl-2 family proteins Bax and Bcl-2 were expressed. The caspase cascade reaction was induced through caspase 3 and 9 expression. From these results, it is suggested that myricetin significantly enhanced the apoptosis induced by serum deprivation in a dose-dependent manner in PC12 cells. Topics: Animals; Apoptosis; Caspase 3; Caspase 9; Cytochromes c; DNA Fragmentation; Flavonoids; Mitochondria; PC12 Cells; Proto-Oncogene Proteins c-bcl-2; Rats; Serum; Signal Transduction | 2018 |
Correlation between the potency of flavonoids for cytochrome c reduction and inhibition of cardiolipin-induced peroxidase activity.
There are large differences between flavonoids to protect against apoptosis, a process in which cytochrome c (Cyt c) plays a key role. In this work, we show that 7 of 13 flavonoids studied have a capacity to reduce Cyt c similar or higher than ascorbate, the flavonols quercetin, kaempferol and myricetin, flavanol epigallocatechin-gallate, anthocyanidins cyanidin and malvidin, and the flavone luteolin. In contrast, the kaempferol 3(O)- and 3,4'(O)-methylated forms, the flavanone naringenin, and also apigenin and chrysin, had a negligible reducing capacity. Equilibrium dialysis and quenching of 1,6-diphenyl-1,3,5-hexatriene fluorescence experiments showed that flavonoids did not interfere with Cyt c binding to cardiolipin (CL)/phosphatidylcholine (PC) vesicles. However, the CL-induced loss of Cyt c Soret band intensity was largely attenuated by flavonoids, pointing out a stabilizing action against Cyt c unfolding in the complex. Moreover, flavonoids that behave as Cyt c reductants also inhibited the pro-apoptotic CL-induced peroxidase activity of Cyt c, indicating that modulation of Cyt c signaling are probable mechanisms behind the protective biological activities of flavonoids. © 2016 BioFactors, 43(3):451-468, 2017. Topics: Animals; Anthocyanins; Ascorbic Acid; Cardiolipins; Catechin; Cytochromes c; Diphenylhexatriene; Flavonoids; Fluorescent Dyes; Horses; Kaempferols; Luteolin; Oxidation-Reduction; Peroxidases; Phosphatidylcholines; Protein Binding; Protein Conformation; Quercetin; Reducing Agents; Spectrometry, Fluorescence; Static Electricity; Unilamellar Liposomes | 2017 |
Myricetin Selectively Induces Apoptosis on Cancerous Hepatocytes by Directly Targeting Their Mitochondria.
Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related death. In patients for whom HCC could not be detected early, current treatments show poor tolerance and low efficacy. So, alternative therapies with good efficacy are urgently needed. The aim of this research was to evaluate the selective apoptotic effects of myricetin (MYR), a flavonoid compound, on hepatocytes and mitochondria obtained from the liver of HCC rats. In this study, HCC induced by diethylnitrosamine (DEN), as an initiator, and 2-acetylaminofluorene (2-AAF), as a promoter. To confirm the HCC induction, serum levels of alpha-fetoprotein (AFP), AST, AST and ALP and histopathological changes in the liver tissue were evaluated. Rat liver hepatocytes and mitochondria for evaluation of the selective cytotoxic effects of MYR were isolated, and mitochondrial and cellular parameters related to apoptosis signalling were then determined. Our results showed that MYR was able to induce cytotoxicity only in hepatocytes from the HCC but not from the untreated control group. Besides, MYR (12.5, 25 and 50 μM) induced a considerable increase in reactive oxygen species (ROS) level, mitochondrial swelling, mitochondrial membrane permeabilization (MMP) and cytochrome c release only in cancerous but not in untreated normal hepatocyte mitochondria. MYR selectively increased caspase-3 activation and apoptotic phenotypes in HCC, but not untreated normal hepatocytes. Finally, our finding underlines MYR as a promising therapeutic candidate against HCC and recommends the compound for further studies. Topics: 2-Acetylaminofluorene; Alanine Transaminase; Alkaline Phosphatase; alpha-Fetoproteins; Animals; Apoptosis; Aspartate Aminotransferases; Carcinoma, Hepatocellular; Caspase 3; Cytochromes c; Diethylnitrosamine; Disease Models, Animal; Flavonoids; Hepatocytes; Liver; Liver Neoplasms; Male; Membrane Potential, Mitochondrial; Mitochondria; Mitochondrial Swelling; Organ Size; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species | 2016 |
Myricetin induces apoptosis in HepG2 cells through Akt/p70S6K/bad signaling and mitochondrial apoptotic pathway.
The present investigation was undertaken to gain insight into the molecular mechanism by which myricetin induces apoptosis in human hepatocarcinoma HepG2 cells. Myricetin caused the disruption of mitochondrial membrane potential in a dose-dependent manner. Moreover, myricetin triggered translocation of the pro-apoptotic protein Bax to the mitochondria, downregulation of anti-apoptotic Bcl-2 expression and upregulated the expression of pro-apoptotic protein Bad in the mitochondria. The present study also showed that myricetin promoted the release of cytochrome C from mitochondria into the cytosol followed by an increase in the proteolytic activation of caspase-3 and the concomitant degradation of PARP protein. Additionally, western blot analysis showed that the Akt/p70s6k1 pathway was inhibited in myricetin-treated HepG2 cells, accordingly the phosphorylation of Bad at Ser136 was downregulated. Collectively, these findings indicate that myricetin induced apoptosis in HepG2 cell through mitochondria apoptotic pathway and Akt/p70s6k1/Bad signaling. Present results provide new information on the possible mechanisms for the anti-cancer activity of myricetin. Topics: Antineoplastic Agents, Phytogenic; Apoptosis; bcl-2-Associated X Protein; bcl-Associated Death Protein; Caspase 3; Cytochromes c; Dose-Response Relationship, Drug; Flavonoids; Gene Expression Regulation, Neoplastic; Hep G2 Cells; Humans; Membrane Potential, Mitochondrial; Mitochondria; Poly(ADP-ribose) Polymerases; Proto-Oncogene Proteins c-akt; Ribosomal Protein S6 Kinases, 70-kDa; Signal Transduction | 2013 |
Myricetin protects against cytokine-induced cell death in RIN-m5f β cells.
Cytokine-induced cell death is recognized as a major cause of progressive β-cell loss. Tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and interferon γ (IFN-γ) in combination trigger a series of events that lead to β-cell death. In the past few decades, the use of myricetin as an anti-inflammatory and cytoprotective agent has gained much attention. The present study focused on the protective roles of myricetin against cytokine-induced cell death in insulin-secreting RIN-m5f β cells. The results showed that myricetin (especially at concentrations of 10 μM and 20 μM) increased cell viability and decreased cell apoptosis induced by the cytokine mixture of TNF-α (10 ng/mL), IL-1β (5 ng/mL), and IFN-γ (1000 IU/mL) for 3 days. Moreover, the cytokines increased the total and p65 subunit levels of nuclear factor κB, decreased inhibitor κB α levels, stimulated the accumulation of nitric oxide, increased cytochrome c release from mitochondria, and induced reactive oxygen species generation; myricetin (especially at the concentration of 20 μM) abolished all of these parameters. These results suggest that myricetin might have therapeutic value for preventing β-cell death. Topics: Apoptosis; Cell Line, Tumor; Cytochromes c; Flavonoids; Humans; Insulin; Insulin Secretion; Insulin-Secreting Cells; Interferon-gamma; Interleukin-1beta; Mitochondria; Nitric Oxide; Protective Agents; Tumor Necrosis Factor-alpha | 2012 |
Mitochondrial-dependent, reactive oxygen species-independent apoptosis by myricetin: roles of protein kinase C, cytochrome c, and caspase cascade.
Abrogation of mitochondrial permeability and induction of reactive oxygen species (ROS) production have been observed in chemical-induced apoptosis; however, the relationship between the mitochondria and intracellular ROS levels in apoptosis is still unclear. In the present study, myricetin (ME) but not its respective glycoside, myricitrin (MI; myricetin-3-O-rhamnose) reduced the viability of human leukemia HL-60 cells via apoptosis, characterized by the occurrence of DNA ladders and hypodiploid cells. Results of Western blotting and caspase activity assays showed that activation of caspases 3 and 9 but not caspases 1, 6 or 8 with cleavage of PARP and D4-GDI proteins is involved in ME-induced apoptosis. A reduction in mitochondrial functions characterized by a decrease in the Bcl-2/Bax protein ratio and translocation of cytochrome c (cyt c) from the mitochondria to the cytosol in accordance with a decrease in mitochondrial membrane potential were observed in ME-treated HL-60 cells. No significant induction of intracellular ROS levels by ME was observed by the DCHF-DA assay, DPPH assay or plasmid digestion assay, and antioxidants including N-acetyl-cysteine (NAC), catalase (CAT), superoxide dismutase (SOD), and tiron (TIR) showed no protective effects on ME-induced apoptosis. A PKC activator, 12-O-tetradecaoylphorbol-13-acetate (TPA) significantly attenuated ME-induced apoptosis via preventing cytochrome c release to the cytosol and maintaining the mitochondrial membrane potential by inhibiting the decrease in the Bcl-2/Bax protein ratio; these effects were blocked by protein kinase C (PKC) inhibitors including GF-109203X, H7, and staurosporin. Removing mitochondria by ethidium bromide (EtBr) treatment reduced the apoptotic effect of ME. Results of SAR studies showed that the presence of OH at C3', C4', and C5' is important for the apoptosis-inducing activities of ME, and that ME induces apoptosis in another leukemia cell line, Jurkat cells, but not in primary human polymorphonuclear (PMN) cells or in murine peritoneal macrophages (PMs). The results of the present study suggest that apoptosis induced by ME occurs through a novel mitochondrion-dependent, ROS-independent pathway; TPA protects cells from ME-induced apoptosis via PKC activation which prevents the occurrence of mitochondrial destruction during apoptosis. Topics: Animals; Apoptosis; Caspases; Cells, Cultured; Cytochromes c; Flavonoids; HL-60 Cells; Humans; Jurkat Cells; Male; Mice; Mitochondria; Protein Kinase C; Reactive Oxygen Species; Signal Transduction | 2005 |