cytochrome-c-t has been researched along with mitoquinone* in 2 studies
2 other study(ies) available for cytochrome-c-t and mitoquinone
Article | Year |
---|---|
Protective efficacy of mitochondrial targeted antioxidant MitoQ against dichlorvos induced oxidative stress and cell death in rat brain.
Dichlorvos is a synthetic insecticide that belongs to the family of chemically related organophosphate (OP) pesticides. It can be released into the environment as a major degradation product of other OPs, such as trichlorfon, naled, and metrifonate. Dichlorvos exerts its toxic effects in humans and animals by inhibiting neural acetylcholinesterase. Chronic low-level exposure to dichlorvos has been shown to result in inhibition of the mitochondrial complex I and cytochrome oxidase in rat brain, resulting in generation of reactive oxygen species (ROS). Enhanced ROS production leads to disruption of cellular antioxidant defense systems and release of cytochrome c (cyt c) from mitochondria to cytosol resulting in apoptotic cell death. MitoQ is an antioxidant, selectively targeted to mitochondria and protects it from oxidative damage and has been shown to decrease mitochondrial damage in various animal models of oxidative stress. We hypothesized that if oxidative damage to mitochondria does play a significant role in dichlorvos induced neurodegeneration, then MitoQ should ameliorate neuronal apoptosis. Administration of MitoQ (100 μmol/kg body wt/day) reduced dichlorvos (6 mg/kg body wt/day) induced oxidative stress (decreased ROS production, increased MnSOD activity and glutathione levels) with decreased lipid peroxidation, protein and DNA oxidation. In addition, MitoQ also suppressed DNA fragmentation, cyt c release and caspase-3 activity in dichlorvos treated rats compared to the control group. Further electron microscopic studies revealed that MitoQ attenuates dichlorvos induced mitochondrial swelling, loss of cristae and chromatin condensation. These results indicate that MitoQ may be beneficial against OP (dichlorvos) induced neurodegeneration. Topics: Animals; Antioxidants; Brain; Caspase 3; Cell Death; Cholinesterase Inhibitors; Cytochromes c; Dichlorvos; Lipid Peroxidation; Male; Mitochondria; Organophosphorus Compounds; Oxidative Stress; Protein Carbonylation; Rats; Rats, Wistar; Reactive Oxygen Species; RNA, Messenger; Superoxide Dismutase; Ubiquinone | 2011 |
Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury.
Mitochondrial oxidative damage contributes to a wide range of pathologies, including cardiovascular disorders and neurodegenerative diseases. Therefore, protecting mitochondria from oxidative damage should be an effective therapeutic strategy. However, conventional antioxidants have limited efficacy due to the difficulty of delivering them to mitochondria in situ. To overcome this problem, we developed mitochondria-targeted antioxidants, typified by MitoQ, which comprises a lipophilic triphenylphosphonium (TPP) cation covalently attached to a ubiquinol antioxidant. Driven by the large mitochondrial membrane potential, the TPP cation concentrates MitoQ several hundred-fold within mitochondria, selectively preventing mitochondrial oxidative damage. To test whether MitoQ was active in vivo, we chose a clinically relevant form of mitochondrial oxidative damage: cardiac ischemia-reperfusion injury. Feeding MitoQ to rats significantly decreased heart dysfunction, cell death, and mitochondrial damage after ischemia-reperfusion. This protection was due to the antioxidant activity of MitoQ within mitochondria, as an untargeted antioxidant was ineffective and accumulation of the TPP cation alone gave no protection. Therefore, targeting antioxidants to mitochondria in vivo is a promising new therapeutic strategy in the wide range of human diseases such as Parkinson's disease, diabetes, and Friedreich's ataxia where mitochondrial oxidative damage underlies the pathology. Topics: Animals; Antioxidants; Cytochromes c; Heart; Male; Mitochondria; Myocardial Reperfusion Injury; Organophosphorus Compounds; Oxygen Consumption; Protective Agents; Rats; Rats, Wistar; Ubiquinone | 2005 |