cytochrome-c-t and iminodiacetic-acid

cytochrome-c-t has been researched along with iminodiacetic-acid* in 2 studies

Other Studies

2 other study(ies) available for cytochrome-c-t and iminodiacetic-acid

ArticleYear
Surface-Enhanced Raman Scattering for Direct Protein Function Investigation: Controlled Immobilization and Orientation.
    Analytical chemistry, 2019, 07-16, Volume: 91, Issue:14

    Surface-enhanced Raman spectroscopy (SERS) has exhibited great potential in protein identification and quantification. However, the poor spectral reproducibility, originating from random protein immobilization on SERS substrates, still makes it challenging for SERS to probe protein functions without any extrinsic Raman labels. Here, in our study, spacer molecules between proteins and SERS substrates are optimized for both biocompatible protein immobilization and Raman scattering enhancement. We have accordingly prepared iminodiacetic acid (IDA)-functionalized silver substrates, which are used for capturing His-tagged proteins via nickel-imidazole coordination. The controlled immobilization enables excellent SERS spectral reproducibility as evidenced by 6 polypeptides. Furthermore, the interactions between two model proteins, Erv1C (C-terminal domain of flavine adenine dinucleotide-dependent mitochondrial cytochrome c reductase Erv1) and AFP (alpha-fetoprotein), and their ligands Cyt c (cytochrome c) and ATRA (all-trans-retinoic acid) are examined, respectively. The results indicate that the IDA-functionalized silver substrates enable controlled protein immobilization and allow label-free protein function investigation by SERS. As a proof-of-concept study, the proposed functionalized SERS-active substrates combined with immobilized metal-affinity chromatography will be useful for mechanism studies on protein-ligand interactions, which is crucially important for understanding the structural basis of protein functional versatility and will contribute to the fields of drug design and biotechnology.

    Topics: alpha-Fetoproteins; Animals; Cytochromes c; Humans; Imino Acids; Immobilized Proteins; Ligands; Models, Molecular; Peptides; Proteins; Silver; Spectrum Analysis, Raman; Surface Properties

2019
Novel bis(5-methyltetrazolium)amine ligand-bonded stationary phase with reduced leakage of metal ions in immobilized metal affinity chromatography of proteins.
    Analytical and bioanalytical chemistry, 2016, Volume: 408, Issue:27

    Immobilized metal affinity chromatography (IMAC) has been widely used for the specific separation of biopolymers. However, leakage of metal ions from IMAC adsorbents is of concern in IMAC. In this study, we designed a novel tridenate bis(5-methyltetrazolium)amine (BMTA) to reduce the leakage of metal ions by improving the affinity to immobilized metal ions. The ligand was bonded onto silica via three-step reaction to prepare a high-performance IMAC stationary phase. The chromatographic behaviors of ribonuclease A, cytochrome c, and lysozyme on the Cu(II)-, Ni(II)-, and Zn(II)-chelated stationary phase were investigated with respect to pH effect and elution with an imidazole gradient. The retention times of these three proteins increased by increasing the pH of the mobile phase but decreased by increasing the concentration of the competitive displacer. The retaining strength of the three proteins on the chelated stationary phase were in the order Cu(II) > Ni(II) > Zn(II). The behavior of these three proteins was consistent with the properties of a typical IMAC. The BMTA ligand exhibited a much stronger affinity for Cu(II) and Ni(II) than iminodiacetic acid (IDA), which is often regarded as a standard tridentate IMAC ligand. Quantum mechanical calculations at the B3LYP/6-31G level were used to image the coordination mode of the protein-metal ions-BMTA complex. In addition, a fused histidine-tagged cecropin b-human epidermal growth factor (CB-EGF) from Escherichia coli crude extract was purified by the Ni(II)-chelated stationary phase, and the purity of the CB-EGF was determined to be at least 90 %. These results suggest that the BMTA ligand may have potential applications in the preparation of therapeutics. Graphical Abstract A novel ligand of tridenate bis(5-methyltetrazolium)amine (BMTA) was designed to reduce the leakage of metal ions from the column in immobolized metal affinity chromatography (IMAC).

    Topics: Adsorption; Chromatography, Affinity; Copper; Cytochromes c; Epidermal Growth Factor; Humans; Hydrogen-Ion Concentration; Imidazoles; Imino Acids; Muramidase; Nickel; Quantum Theory; Ribonuclease, Pancreatic; Silicon Dioxide; Tetrazolium Salts; Zinc

2016