cytochrome-c-t has been researched along with homoserine-lactone* in 3 studies
3 other study(ies) available for cytochrome-c-t and homoserine-lactone
Article | Year |
---|---|
N-(3-Oxo-acyl)-homoserine lactone induces apoptosis primarily through a mitochondrial pathway in fibroblasts.
N-(3-Oxododecanoyl)-l-homoserine lactone (C12) is produced by Pseudomonas aeruginosa to function as a quorum-sensing molecule for bacteria-bacteria communication. C12 is also known to influence many aspects of human host cell physiology, including induction of cell death. However, the signalling pathway(s) leading to C12-triggered cell death is (are) still not completely known. To clarify cell death signalling induced by C12, we examined mouse embryonic fibroblasts deficient in "initiator" caspases or "effector" caspases. Our data indicate that C12 selectively induces the mitochondria-dependent intrinsic apoptotic pathway by quickly triggering mitochondrial outer membrane permeabilisation. Importantly, the activities of C12 to permeabilise mitochondria are independent of activation of both "initiator" and "effector" caspases. Furthermore, C12 directly induces mitochondrial outer membrane permeabilisation in vitro. Overall, our study suggests a mitochondrial apoptotic signalling pathway triggered by C12, in which C12 or its metabolite(s) acts on mitochondria to permeabilise mitochondria, leading to activation of apoptosis. Topics: 4-Butyrolactone; Animals; Apoptosis; Caspase 3; Caspase 7; Caspase 9; Cell Line, Tumor; Cytochromes c; Fibroblasts; HCT116 Cells; Homoserine; Humans; Mice; Mice, Knockout; Microbial Interactions; Mitochondria; Mitochondrial Membranes; Pseudomonas aeruginosa; Quorum Sensing | 2018 |
Pseudomonas aeruginosa homoserine lactone triggers apoptosis and Bak/Bax-independent release of mitochondrial cytochrome C in fibroblasts.
Pseudomonas aeruginosa use N-(3-oxododecanoyl)-homoserine lactone (C12) as a quorum-sensing molecule to regulate gene expression in the bacteria. It is expected that in patients with chronic infections with P. aeruginosa, especially as biofilms, local [C12] will be high and, since C12 is lipid soluble, diffuse from the airways into the epithelium and underlying fibroblasts, capillary endothelia and white blood cells. Previous work showed that C12 has multiple effects in human host cells, including activation of apoptosis. The present work tested the involvement of Bak and Bax in C12-triggered apoptosis in mouse embryo fibroblasts (MEF) by comparing MEF isolated from embryos of wild-type (WT) and Bax(-/-) /Bak(-/-) (DKO) mice. In WT MEF C12 rapidly triggered (minutes to 2 h): activation of caspases 3/7 and 8, depolarization of mitochondrial membrane potential (Δψmito ), release of cytochrome C from mitochondria into the cytosol, blebbing of plasma membranes, shrinkage/condensation of cells and nuclei and, subsequently, cell killing. A DKO MEF line that was relatively unaffected by the Bak/Bax-dependent proapoptotic stimulants staurosporine and etoposide responded to C12 similarly to WT MEF: activation of caspase 3/7, depolarization of Δψmito and release of cytochrome C and cell death. Re-expression of Bax or Bak in DKO MEF did not alter the WT-like responses to C12 in DKO MEF. These data showed that C12 triggers novel, rapid proapoptotic Bak/Bax-independent responses that include events commonly associated with activation of both the intrinsic pathway (depolarization of Δψmito and release of cytochrome C from mitochondria into the cytosol) and the extrinsic pathway (activation of caspase 8). Unlike the proapoptotic agonists staurosporine and etoposide that release cytochrome C from mitochondria, C12's effects do not require participation of either Bak or Bax. Topics: 4-Butyrolactone; Animals; Apoptosis; bcl-2 Homologous Antagonist-Killer Protein; Caspase 3; Caspase 7; Cell Shape; Cytochromes c; Fibroblasts; HEK293 Cells; Host-Pathogen Interactions; Humans; Membrane Potential, Mitochondrial; Mice; Mitochondria; NIH 3T3 Cells; Pseudomonas aeruginosa | 2014 |
Chemical synthesis of cell-permeable apoptotic peptides from in vivo produced proteins.
In vivo synthesis of peptides by bacterial expression has developed into a reliable alternative to solid-phase peptide synthesis. A significant drawback of in vivo methods is the difficulty with which gene products can be modified post-translationally. Here, we present a method for the facile modification of peptides generated in bacterial hosts after cyanogen bromide cleavage at C-terminal methionines. Reaction of the resulting homoserine lactones with propargylamine allows efficient and selective modification with a wide variety of chemicals such as fluorescent dyes, biotin derivatives, polyprenyls, lipids, polysaccharides, or peptides. Attachment of the cell penetrating peptide octa-arginine (R(8)) to peptides derived from the proapoptotic tumor suppressor Bak BH3 led to efficient cellular uptake and subsequent cytochrome c release from mitochondria, culminating in induction of apoptosis similar to that observed with peptides linked to R(8) via the peptide backbone. These results highlight the significant potential for use of such tools in live cells. Topics: 4-Butyrolactone; Amino Acid Sequence; Apoptosis; bcl-2 Homologous Antagonist-Killer Protein; Cell Line, Tumor; Cell Membrane Permeability; Cyanogen Bromide; Cytochromes c; Humans; Molecular Sequence Data; Oligopeptides; Peptide Fragments; Peptides; Protein Engineering; Proto-Oncogene Proteins; Recombinant Fusion Proteins | 2011 |