cytochrome-c-t and gambogic-acid

cytochrome-c-t has been researched along with gambogic-acid* in 8 studies

Other Studies

8 other study(ies) available for cytochrome-c-t and gambogic-acid

ArticleYear
Triphenylphosphonium-modified poly(ethylene glycol)-poly(ε-caprolactone) micelles for mitochondria- targeted gambogic acid delivery.
    International journal of pharmaceutics, 2017, Apr-30, Volume: 522, Issue:1-2

    Mitochondria are important targets for the intracellular delivery of drugs and DNA. For mitochondria-targeted delivery, a mitochondriotropic molecule, triphenylphosphonium (TPP), was applied to the synthesis of amphiphilic TPP-poly(ethylene glycol)-poly(ε-caprolactone) (TPP-PEG-PCL) polymers. The TPP-PEG-PCL polymer was used to prepare micelles using a solvent evaporation method for the delivery of gambogic acid (GA) (GA-TPP). The micelles were obtained with a favorable particle size of 150.07±11.71nm and an encapsulation efficiency of 80.78±1.36%, and they displayed homogeneous spherical shapes. The GA-TPP micelles exerted enhanced cytotoxic and pro-apoptotic effect against A549 cells compared to free GA and GA-loaded PEG-PCL (GA-PP) micelles, due to the inhibition of the expression of apoptosis-related proteins and promotion of caspase 3/7 and caspase 9 activity. Notably, the mitochondria-targeting GA-TPP micelles selectively accumulated in the mitochondria, inducing the loss of mitochondrial membrane potential and the release of cytochrome c, thereby achieving improved mitochondria-targeting effects. In conclusion, the GA-TPP micelle system shows great promise for lung cancer treatment by inducing an apoptotic effect via the mitochondrial signaling pathway.

    Topics: A549 Cells; Antineoplastic Agents, Phytogenic; Apoptosis; Apoptosis Regulatory Proteins; Caspases; Cytochromes c; Drug Delivery Systems; Humans; Lactic Acid; Membrane Potential, Mitochondrial; Micelles; Mitochondria; Onium Compounds; Particle Size; Polyesters; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer; Trityl Compounds; Xanthones

2017
Gambogic acid induces apoptotic cell death in T98G glioma cells.
    Bioorganic & medicinal chemistry letters, 2016, Feb-01, Volume: 26, Issue:3

    Gambogic acid (GA), a natural product with a xanthone structure, has a broad range of anti-proliferative effects on cancer cell lines. We evaluated GA for its cytotoxic effects on T98G glioblastoma cells. GA exhibited potent anti-proliferative activity and induced apoptosis in T98G glioblastoma cells in a dose-dependent manner. Incubation of cells with GA revealed apoptotic features including increased Bax and AIF expression, cytochrome c release, and cleavage of caspase-3, -8, -9, and PARP, while Bcl-2 expression was downregulated. Furthermore, GA induced reactive oxygen species (ROS) generation in T98G cells. Our results indicate that GA increases Bax- and AIF-associated apoptotic signaling in glioblastoma cells.

    Topics: Antineoplastic Agents; Apoptosis; Brain Neoplasms; Caspase 3; Caspase 8; Caspase 9; Cell Line, Tumor; Cell Proliferation; Cytochromes c; Down-Regulation; Glioma; Humans; Proto-Oncogene Proteins c-bcl-2; Reactive Oxygen Species; Signal Transduction; Xanthones

2016
Functional inhibition of Hsp70 by Pifithrin-μ switches Gambogic acid induced caspase dependent cell death to caspase independent cell death in human bladder cancer cells.
    Biochimica et biophysica acta, 2016, Volume: 1863, Issue:11

    Heat shock protein-70kDa (Hsp70) is a member of molecular chaperone family, involved in the proper folding of various proteins. Hsp70 is important for tumor cell survival and is also reported to be involved in enhancing the drug resistance of various cancer types. Hsp70 controls apoptosis both upstream and downstream of the mitochondria by regulating the mitochondrial membrane permeabilization (MMP) and apoptosome formation respectively. In the present study, we have elucidated the role of Hsp70 in Gambogic acid (GA) induced apoptosis in bladder cancer cells. We observed that functional inhibition of Hsp70 by Pifithrin-μ switches GA induced caspase dependent (apoptotic) cell death to caspase independent cell death. However, this cell death was not essentially necrotic in nature, as shown by the observations like intact plasma membranes, cytochrome-c release and no significant effect on nuclear condensation/fragmentation. Inhibition of Hsp70 by Pifithrin-μ shows differential effect on MMP. GA induced MMP and cytochrome-c release was inhibited by Pifithrin-μ at 12h but enhanced at 24h. Pifithrin-μ also reverted back GA inhibited autophagy which resulted in the degradation of accumulated ubiquitinated proteins. Our results demonstrate that Hsp70 plays an important role in GA induced apoptosis by regulating caspase activation. Therefore, inhibition of Hsp70 may hamper with the caspase dependent apoptotic pathways induced by most anti-cancer drugs and reduce their efficacy. However, the combination therapy with Pifithrin-μ may be particularly useful in targeting apoptotic resistant cancer cells as Pifithrin-μ may initiate alternative cell death program in these resistant cells.

    Topics: Aged; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Autophagy; Carcinoma; Caspases; Cell Line, Tumor; Cytochromes c; Dose-Response Relationship, Drug; Drug Resistance, Neoplasm; Enzyme Activation; Female; HSP70 Heat-Shock Proteins; Humans; Male; Membrane Potential, Mitochondrial; Middle Aged; Necrosis; Proteolysis; Reactive Oxygen Species; Signal Transduction; Sulfonamides; Tumor Cells, Cultured; Ubiquitination; Urinary Bladder Neoplasms; Xanthones

2016
Antiproliferative activity of gambogic acid isolated from Garcinia hanburyi in Hep3B and Huh7 cancer cells.
    Oncology reports, 2013, Volume: 29, Issue:5

    The anticancer activities of gambogic acid (GA) on two hepatocellular carcinoma cells with either p53 deletion (Hep3B) or p53 mutation (Huh7) were investigated in the present study. GA inhibited the growth of Hep3B and Huh7 through similar apoptotic pathways. After treatment of Hep3B and Huh7 with GA for 24 h, the IC₅₀ was determined for both cell lines at 1.8 and 2.2 µM, respectively. The results showed that both cancer cells underwent morphological changes and DNA fragmentation. GA induced apoptosis in the two cell lines through caspases-3/7, -8 and -9 in the mitochondrial pathway. The results suggest that both the caspases in the extrinsic death receptor pathway and the mitochondrial-dependent pathway are involved in the GA-induced cell apoptosis. The inhibitory effects of GA on Hep3B and Huh7 are independent of p53-associated pathway.

    Topics: Apoptosis; bcl-2-Associated X Protein; Carcinoma, Hepatocellular; Caspase 8; Cell Line, Tumor; Cell Proliferation; Cytochromes c; DNA Fragmentation; Garcinia; Humans; Liver Neoplasms; Mitochondria; Plant Extracts; Signal Transduction; Tumor Suppressor Protein p53; Xanthones

2013
Cluvenone induces apoptosis via a direct target in mitochondria: a possible mechanism to circumvent chemo-resistance?
    Investigational new drugs, 2012, Volume: 30, Issue:5

    The synthetic caged Garcinia xanthone, cluvenone, has potent and selective cytotoxicity against numerous cancer cell lines including those that are multi-drug resistant. The direct target of this structurally and functionally unique agent is unknown and that of the parent natural product, gambogic acid (GA), presently in clinical trials, is not yet entirely clear. For the first time, using fluorescently labeled GA (GA-Bodipy), we determined that GA-Bodipy localized in mitochondria and was effectively displaced by cluvenone in competition experiments indicating that the direct target of cluvenone resided in mitochondria and was shared by GA. In agreement with these findings, treatment of HeLa cells with cluvenone or GA resulted in disruption of mitochondrial morphology within 4 h. Furthermore, experiments using the potential sensitive JC-1 dye demonstrated that cells treated with 1 μM cluvenone for 1 h had significant loss of MMP compared to control cells. Examination of Cyt c levels in leukemia cells treated with 1 μM cluvenone resulted in a 4-fold increase in levels of both cytosolic and mitochondrial Cyt c. In agreement with Cyt c release, caspase 9 activity was increased 2.6-fold after treatment of cells for 5 h with 1 μM cluvenone. Remarkably, the caspase-9 inhibitor, Z-LEHD-FMK, blocked cluvenone-induced apoptosis in a dose-dependent manner with apoptosis being completely blocked by 10 μM of the inhibitor. In conclusion, cluvenone, an agent with potent cytotoxicity against multi-drug resistant tumor cells, has direct targets in mitochondria thus setting precedence for drug discovery efforts against these targets in the treatment of refractory cancers.

    Topics: Apoptosis; Caspase 9; Cell Line, Tumor; Cytochromes c; Drug Resistance, Neoplasm; HeLa Cells; Humans; Leukemia; Mitochondria; Xanthones

2012
Gambogic acid promotes apoptosis and resistance to metastatic potential in MDA-MB-231 human breast carcinoma cells.
    Biochemistry and cell biology = Biochimie et biologie cellulaire, 2012, Volume: 90, Issue:6

    Gambogic acid (GA) is considered a potent anti-tumor agent for its multiple effects on cancer cells in vitro and in vivo. Low concentrations of GA (0.3-1.2 µmol/L) can suppress invasion of human breast carcinoma cells without affecting cell viability. To get a whole profile of the inhibition on breast cancers, higher concentrations of GA and spontaneous metastatic animal models were employed. Treatment with GA (3 and 6 µmol/L) induced apoptosis in MDA-MB-231 cells and the accumulation of reactive oxygen species (ROS). Furthermore, GA induced PARP cleavage, activation of caspase-3, caspase-8, and caspase-9, as well as an increased ratio of Bax/Bcl-2. Moreover, the translocation of apoptotic inducing factor (AIF) and the release of cytochrome c (Cyt c) from mitochondria were observed, indicating that GA induced apoptosis through accumulation of ROS and mitochondrial apoptotic pathway. GA also inhibited cell survival via blocking Akt/mTOR signaling. In vivo, GA significantly inhibited the xenograft tumor growth and lung metastases in athymic BALB/c nude mice bearing MDA-MB-231 cells. Collectively, these data provide further support for the multiple effects of GA on human breast cancer cells, as well as for its potential application to inhibit tumor growth and prevent metastasis in human cancers.

    Topics: Animals; Antineoplastic Agents; Apoptosis; Apoptosis Inducing Factor; bcl-2-Associated X Protein; Breast Neoplasms; Caspase 3; Caspase 8; Caspase 9; Cell Line, Tumor; Cell Survival; Cytochromes c; Female; Humans; Mice; Mice, Nude; Neoplasm Metastasis; Reactive Oxygen Species; Signal Transduction; Xanthones; Xenograft Model Antitumor Assays

2012
Reactive oxygen species accumulation contributes to gambogic acid-induced apoptosis in human hepatoma SMMC-7721 cells.
    Toxicology, 2009, Jun-16, Volume: 260, Issue:1-3

    It is reported that gambogic acid (GA), the main active compound of gamboge which is a dry resin extracted from Garcinia hanburyi tree, has potent antitumor activity both in vivo and in vitro. Activation of mitochondrial apoptotic pathway in cancer cells is one effective therapy for cancer treatment. In the present study, we focus on the effect of GA on induction of reactive oxygen species (ROS) accumulation and triggering the mitochondrial signaling pathway in human hepatoma SMMC-7721 cells. The results indicated that GA induced ROS accumulation and collapse of mitochondrial membrane potential in SMMC-7721 cells in a concentration-dependent manner and subsequently induced that release of Cytochrome c and apoptosis-inducing factor from mitochondria to cytosol, which inhibited ATP generation and induced apoptosis in the cells. Moreover, GA elevated the phosphorylation of c-Jun-N-terminal protein kinase (JNK) and p38, which was the downstream effect of ROS accumulation. Furthermore, N-acetylcysteine, a ROS production inhibitor, partly reversed the activation of JNK and p38 and the induction of apoptosis in GA-treated cells. Collectively, our study demonstrated that accumulation of ROS played an important role in GA-induced mitochondrial signaling pathway, which provided further theoretical support for the application of GA as a promising anticancer agent.

    Topics: Acetylcysteine; Adenosine Triphosphate; Antineoplastic Agents, Phytogenic; Apoptosis; Apoptosis Inducing Factor; Blotting, Western; Cell Line, Tumor; Cell Survival; Cytochromes c; Flow Cytometry; Free Radical Scavengers; Glutathione; Humans; JNK Mitogen-Activated Protein Kinases; Liver Neoplasms; Membrane Potential, Mitochondrial; Microscopy, Confocal; Mitochondria, Liver; p38 Mitogen-Activated Protein Kinases; Reactive Oxygen Species; Signal Transduction; Xanthones

2009
Inhibition of glioblastoma growth and angiogenesis by gambogic acid: an in vitro and in vivo study.
    Biochemical pharmacology, 2008, Mar-01, Volume: 75, Issue:5

    Gambogic acid (GA) is the major active ingredient of gamboge, a brownish to orange resin exuded from Garcinia hanburryi tree in Southeast Asia. The present study aims to demonstrate that gambogic acid (GA) has potent anticancer activity for glioblastoma by in vitro and in vivo study. Rat brain microvascular endothelial cells (rBMEC) were used as an in vitro model of the blood-brain barrier (BBB). To reveal an involvement of the intrinsic mitochondrial pathway of apoptosis, the mitochondrial membrane potential and the western blot evaluation of Bax, Bcl-2, Caspase-3, caspase-9 and cytochrome c released from mitochondria were performed. Angiogenesis was detected by CD31 immunochemical study. The results showed that the uptake of GA by rBMEC was time-dependent, which indicated that it could pass BBB and represent a possible new target in glioma therapy. GA could cause apoptosis of rat C6 glioma cells in vitro in a concentration-dependent manner by triggering the intrinsic mitochondrial pathway of apoptosis. In vivo study also revealed that i.v. injection of GA once a day for two weeks could significantly reduce tumor volumes by antiangiogenesis and apoptotic induction of glioma cells. Collectively, the current data indicated that GA may be of potential use in treatment of glioblastoma by apoptotic induction and antiangiogenic effects.

    Topics: Angiogenesis Inhibitors; Animals; Apoptosis; Apoptosis Regulatory Proteins; Cell Line, Tumor; Cell Proliferation; Cell Survival; Cells, Cultured; Cytochromes c; Glioblastoma; Membrane Potential, Mitochondrial; Rats; Rats, Sprague-Dawley; Tumor Burden; Xanthones

2008