cytochrome-c-t and cyclonite

cytochrome-c-t has been researched along with cyclonite* in 2 studies

Other Studies

2 other study(ies) available for cytochrome-c-t and cyclonite

ArticleYear
Involvement of cytochrome c CymA in the anaerobic metabolism of RDX by Shewanella oneidensis MR-1.
    Canadian journal of microbiology, 2012, Volume: 58, Issue:2

    Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a cyclic nitramine explosive commonly used for military applications that is responsible for severe soil and groundwater contamination. In this study, Shewanella oneidensis MR-1 was shown to efficiently degrade RDX anaerobically (3.5 µmol·h(-1)·(g protein)(-1)) via two initial routes: (1) sequential N-NO(2) reductions to the corresponding nitroso (N-NO) derivatives (94% of initial RDX degradation) and (2) denitration followed by ring cleavage. To identify genes involved in the anaerobic metabolism of RDX, a library of ~2500 mutants of MR-1 was constructed by random transposon mutagenesis and screened for mutants with a reduced ability to degrade RDX compared with the wild type. An RDX-defective mutant (C9) was isolated that had the transposon inserted in the c-type cytochrome gene cymA. C9 transformed RDX at ~10% of the wild-type rate, with degradation occurring mostly via early ring cleavage caused by initial denitration leading to the formation of methylenedinitramine, 4-nitro-2,4-diazabutanal, formaldehyde, nitrous oxide, and ammonia. Genetic complementation of mutant C9 restored the wild-type phenotype, providing evidence that electron transport components have a role in the anaerobic reduction of RDX by MR-1.

    Topics: Amines; Anaerobiosis; Biodegradation, Environmental; Biotransformation; Cytochromes c; Electron Transport; Environmental Pollutants; Nitro Compounds; Nitrous Oxide; Shewanella; Triazines

2012
Regulation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) metabolism in Shewanella halifaxensis HAW-EB4 by terminal electron acceptor and involvement of c-type cytochrome.
    Microbiology (Reading, England), 2008, Volume: 154, Issue:Pt 4

    Shewanella halifaxensis HAW-EB4 was previously isolated for its potential to mineralize hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) from a UXO (unexploded ordnance)-contaminated marine sediment site near Halifax Harbor. The present study was undertaken to determine the effect of terminal electron acceptors (TEA) on the growth of strain HAW-EB4 and on the enzymic processes involved in RDX metabolism. The results showed that aerobic conditions were optimal for bacterial growth, but that anaerobic conditions in the presence of trimethylamine N-oxide (TMAO) or in the absence of TEA favoured RDX metabolism. RDX as a substrate neither stimulated respiratory growth nor induced its own biotransformation. Strain HAW-EB4 used periplasmic proteins to transform RDX to both nitroso [hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX), hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazine (DNX), and hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX)] and ring cleavage products (such as methylenedinitramine), with more nitroso formation in cells grown on TMAO or pre-incubated in the absence of TEA. Using spectroscopy, SDS-PAGE and haem-staining analysis, strain HAW-EB4 was found to produce different sets of c-type cytochromes when grown on various TEA, with several more cytochromes produced in cells grown on TMAO. Crude cytochromes from total periplasmic proteins of TMAO-grown cells metabolized RDX to products similar to those found in assays using total periplasmic proteins and whole cells. To prove the involvement of cytochrome in RDX metabolism, we monitored dithionite- or NADH-reduced cytochromes by their absorbance at the alpha (551 nm) or gamma (418-420 nm) bands during anaerobic incubation with RDX. In both cases we found that RDX biotransformation was accompanied by oxidation of reduced cytochrome. Furthermore, O(2), an oxidant of reduced cytochrome, inhibited RDX transformation. The present results demonstrate that S. halifaxensis HAW-EB4 metabolizes RDX optimally under TMAO-reducing conditions, and that c-type cytochromes are involved.

    Topics: Aerobiosis; Anaerobiosis; Biotransformation; Cytochromes c; Electron Transport; Electrophoresis, Polyacrylamide Gel; Metabolic Networks and Pathways; Methylamines; Models, Biological; Nitro Compounds; Nitroso Compounds; Oxidation-Reduction; Oxygen; Periplasmic Proteins; Shewanella; Spectrum Analysis; Staining and Labeling; Triazines

2008