cytochrome-c-t has been researched along with catalpol* in 4 studies
4 other study(ies) available for cytochrome-c-t and catalpol
Article | Year |
---|---|
Catalpol induces apoptosis in breast cancer in vitro and in vivo: Involvement of mitochondria apoptosis pathway and post-translational modifications.
Breast cancer is a fatal cancer with the highest mortality in female. New strategies for anti-breast cancer are still urgently needed. Catalpol, an iridoid glycoside extracted from the traditional Chinese medicinal plant Rehmannia glutinosa, has shown anticancer efficacy in various cancer cells. However, its effect on breast cancer remains unclear. In this study, we aim to investigate the anti-breast cancer activity of catalpol and elucidate its underlying mechanism. Cell counting kit-8 (CCK-8) and morphology change showed that catalpol could inhibit the proliferation and viability of MCF-7 cells. Catalpol administration reduced the tumor volume in xenograft model. Catalpol induced apoptosis in MCF-7 cells confirmed by Hoechst 33342 staining and Annexin V-FITC/PI double staining. In vivo, catalpol also induced apoptosis as seen from the increased level of terminal-deoxynucleoitidyl transferase mediated nick end labeling (TUNEL) in tumor. According to JC-1 and Dichlorodi-hydrofluorescein Diacetate (DCFH-DA) staining, loss of mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) generation was found in MCF-7 cells treated with catalpol. Furthermore, catalpol also increased the level of cytoplasmic cytochrome c and activity of caspase-3 in MCF-7 cells. Likewise, histopathological and immunohistochemical (IHC) assay also found that catalpol enhanced the levels of cytochrome c and caspase-3 in breast cancer tissues. Ultimately, acetylation, 2-hydroxyisobutyrylation and lactylation were dramatically increased, whereas succinylation, malonylation and phosphorylation were markedly decreased in the breast cancer tumor treated with catalpol. Taken together, catalpol inhibited breast cancer in vitro and in vivo through induction of apoptosis via mitochondria apoptosis pathway and regulation of protein post-translational modifications (PTMs). Thus, it can be considered as an excellent candidate compound for treatment of breast cancer. Topics: Apoptosis; Breast Neoplasms; Caspase 3; Cytochromes c; Female; Humans; Iridoid Glucosides; Mitochondria; Protein Processing, Post-Translational; Reactive Oxygen Species | 2022 |
Targeting of miR-96-5p by catalpol ameliorates oxidative stress and hepatic steatosis in LDLr-/- mice via p66shc/cytochrome C cascade.
Hepatic steatosis and oxidative stress are considered to be the sequential steps in the development of non-alcoholic fatty liver disease (NAFLD). We previously found that catalpol, an iridoid glucoside extracted from the root of Romania glutinosa L, protected against diabetes-induced hepatic oxidative stress. Here, we found that the increased expression of p66shc was observed in NAFLD models and catalpol could inhibit p66shc expression to ameliorate NAFLD effectively. However, the underlying mechanisms remained unknown. The aim of the present study was to investigate the p66shc-targeting miRNAs in regulating oxidative stress and hepatic steatosis, also the mechanisms of catalpol inhibiting NAFLD. We found that the effects of catalpol inhibiting hepatic oxidative stress and steasis are dependent on inhibiting P66Shc expression. In addition, miR-96-5p was able to suppress p66shc/cytochrome C cascade via targeting p66shc mRNA 3'UTR, and catalpol could lead to suppression of NAFLD via upregulating miR-96-5p level. Thus, catalpol was effective in ameliorating NAFLD, and miR-96-5p/p66shc/cytochrome C cascade might be a potential target. Topics: Animals; Cytochromes c; Diet, Western; Fatty Liver; Iridoid Glucosides; Liver; Mice; Mice, Knockout; MicroRNAs; Non-alcoholic Fatty Liver Disease; Oxidative Stress; Receptors, LDL; Src Homology 2 Domain-Containing, Transforming Protein 1 | 2020 |
Catalpol inhibits apoptosis in hydrogen peroxide-induced cardiac myocytes through a mitochondrial-dependent caspase pathway.
Catalpol, an iridoid glucoside, has been reported to inhibit apoptosis of neuron and endothelial cells. In the present study, we investigated the mechanism of catalpol-mediated cardioprotection. The rat embryonic ventricular myocardial cell line (H9c2) cells were first incubated with catalpol, and then exposed to hydrogen peroxide (H2O2). The concentration of malondialdehyde (MDA) and the activity of superoxide dismutase (SOD) were all determined by using commercially available kits. Apoptotic cells were assessed by Hoechst 33258 and Annexin V-fluorescein isothiocyanate binding assay. Synthesis of Bcl-2, Bax, cytochrome c and caspase-3 were analysed by real-time semiquantitative reverse transcription-PCR and Western blotting. We observed that apoptosis in H9c2 was associated with increased Bax, cytochrome c, caspase-3, decreased Bcl-2 activity after 24 h of H2O2 exposure. Catalpol pretreatment afforded a marked protection against the above H2O2-mediated cytotoxicity and apoptosis in H9c2 cells. Moreover, the catalpol pretreatment led to a great reduction in H2O2-induced MDA release and increased SOD. These findings indicated for the first time that pretreatment of H9c2 cells with catalpol can be against H2O2-induced apoptosis, and the protective effect of catalpol involves the mitochondrial-dependent caspase pathway and is associated with increased Bcl-2 and decreased Bax expression. Topics: Animals; Apoptosis; bcl-2-Associated X Protein; Caspase 3; Cytochromes c; Gene Expression Regulation; Heart Ventricles; Hydrogen Peroxide; Iridoid Glucosides; Mitochondria; Myocytes, Cardiac; Oxidative Stress; Proto-Oncogene Proteins c-bcl-2; Rats; Reactive Oxygen Species; Superoxide Dismutase | 2016 |
Catalpol inhibits apoptosis in hydrogen peroxide-induced PC12 cells by preventing cytochrome c release and inactivating of caspase cascade.
In the present study, using a rat pheochromocytoma (PC12) cell line, the effect of catalpol on H2O2-induced apoptosis was studied. The apoptosis in H2O2-induced PC12 cells was accompanied by down-regulation of Bcl-2, up-regulation of Bax, the release of mitochondrial cytochrome c to cytosol and sequential activation of caspase-1 and caspase-3 then leading to cleavage of poly-ADP-ribose polymerase (PARP). Catalpol not only suppressed the down-regulation of Bcl-2, up-regulation of Bax and the release of mitochondrial cytochrome c to cytosol, but also attenuated caspase-3 activation, PARP cleavage, and eventually protected against H2O2-induced apoptosis. Taken together, these results suggest that treatment of PC12 cells with catalpol can block H2O2-induced apoptosis by the regulation of Bcl-2 family members, as well as suppression of cytochrome c release and caspase cascade activation. Topics: Animals; Apoptosis; bcl-2-Associated X Protein; Caspases; Cytochromes c; Drugs, Chinese Herbal; Gene Expression Regulation; Genes, bcl-2; Glucosides; Hydrogen Peroxide; Iridoid Glucosides; Iridoids; PC12 Cells; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-bcl-2; Rats | 2004 |