cytochrome-c-t has been researched along with boric-acid* in 2 studies
2 other study(ies) available for cytochrome-c-t and boric-acid
Article | Year |
---|---|
Dietary flavonoids inhibit the anticancer effects of the proteasome inhibitor bortezomib.
Dietary flavonoids have many health-promoting actions, including anticancer activity via proteasome inhibition. Bor-tezomib is a dipeptide boronate proteasome inhibitor that has activity in the treatment of multiple myeloma but is not effective in chronic lymphocytic leukemia (CLL). Although CLL cells are sensitive in vitro to bortezomib-induced apoptosis when cultured in medium, the killing activity was blocked when cultured in 50% fresh autologous plasma. Dietary flavonoids, quercetin and myricetin, which are abundant in plasma, inhibited bortezomib-induced apoptosis of primary CLL and malignant B-cell lines in a dose-dependent manner. This inhibitory effect was associated with chemical reactions between quercetin and the boronic acid group, -RB(OH)2, in bortezomib. The addition of boric acid diminished the inhibitory effect of both quercetin and plasma on bortezomib-induced apoptosis. The protective effect was also reduced when myeloma cell lines, but not B-cell lines, were preincubated with quercetin, indicating a direct effect of quercetin on myeloma cells. At high doses, quercetin itself induced tumor cell death. These data indicate that dietary flavonoids limit the efficacy of bortezomib, whereas supplemental inorganic boric acid is able to reverse this. The complex interactions between quercetin, tumor cells, and bortezomib mean caution is required when giving dietary advice to patients. Topics: Antineoplastic Agents; Apoptosis; bcl-2-Associated X Protein; Boric Acids; Boronic Acids; Bortezomib; Cell Line, Transformed; Cell Line, Tumor; Cytochromes c; Diet; Flavonoids; Free Radical Scavengers; Humans; In Vitro Techniques; Leukemia, Lymphocytic, Chronic, B-Cell; Lymphoma, B-Cell; Multiple Myeloma; Protease Inhibitors; Pyrazines; Quercetin | 2008 |
Comparative effects of boric acid and calcium fructoborate on breast cancer cells.
Recent studies suggested that boron has a chemo-preventive role in prostate cancer. In the present report, we investigated the effects of calcium fructoborate (CF) and boric acid (BA) on activation of the apoptotic pathway in MDA-MB-231 human breast cancer cells. Exposure to BA and CF inhibited the proliferation of breast cancer cells in a dose-dependent manner. Treatment with CF but not BA resulted in a decrease in p53 and bcl-2 protein levels. Furthermore, after the treatment with CF, augmentation of pro-caspase-3 protein expression, cytosolic cytochrome c level, and caspase-3 activity were observed, indicating apoptotic cell death induction. This was also demonstrated by terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate nick-end-labeling assay. In conclusion, our data provide arguments to the fact that both BA and CF inhibited the growth of breast cancer cells, while only CF induced apoptosis. Additional studies will be needed to identify the underlying mechanism responsible for the observed cellular responses to these compounds and to determine if BA and CF may be further evaluated as chemotherapeutic agents for human cancer. Topics: Antineoplastic Agents; Apoptosis; Blotting, Western; Borates; Boric Acids; Breast Neoplasms; Caspase 3; Cell Line, Tumor; Cell Proliferation; Cytochromes c; Dose-Response Relationship, Drug; Female; Fructose; Humans; Proto-Oncogene Proteins c-bcl-2; Tumor Suppressor Protein p53 | 2008 |