cytochrome-c-t has been researched along with azobenzene* in 3 studies
3 other study(ies) available for cytochrome-c-t and azobenzene
Article | Year |
---|---|
BH3 helix-derived biophotonic nanoswitches regulate cytochrome c release in permeabilised cells.
Dynamic physical interactions between proteins underpin all key cellular processes and are a highly attractive area for the development of research tools and medicines. Protein-protein interactions frequently involve α-helical structures, but peptides matching the sequences of these structures usually do not fold correctly in isolation. Therefore, much research has focused on the creation of small peptides that adopt stable α-helical structures even in the absence of their intended protein targets. We show that short peptides alkylated with azobenzene crosslinkers can be used to photo-stimulate mitochondrial membrane depolarization and cytochrome c release in permeabilised cells, the initial events of the intrinsic apoptosis pathway. Topics: Alkylation; Amino Acid Sequence; Azo Compounds; Cell Line, Tumor; Cytochromes c; Humans; Mitochondria; Peptide Fragments; Protein Structure, Secondary; Proto-Oncogene Proteins | 2013 |
Unfolding of cytochrome C upon interaction with azobenzene-modified copolymers.
Hydrophilic or amphiphilic macromolecules are common organic matrices used to encapsulate and protect fragile drugs such as proteins. Polymer cargoes are in addition designed for remote control of protein delivery, upon imparting the macromolecules with stimuli-responsive properties, such as light-triggered polarity switches. The effect of interaction between polymers and proteins on the stability of the proteins is, however, rarely investigated. Here we studied the unfolding/folding equilibrium of cytochrome c (cyt c) under its oxidized or reduced forms, in the presence of various amphiphilic copolymers (by circular dichroism and intrinsic fluorescence measurements). As models of stimuli-responsive amphiphilic chains, we considered poly(acrylic acid) derivatives, modified to contain hydrophobic, light-responsive azobenzene moieties. These copolymers are, thus, capable to develop both ionic (under their sodium forms at pH > 8) and hydrophobic associations with the basic protein cyt c (isoelectric point of 10.0). In aqueous buffer upon increasing urea concentrations, cyt c underwent unfolding, at [urea] of 9-10 M, which was analyzed under the framework of the equilibrium between two states (native-unfolded). In the presence of polymers, the native folding of cyt c was preserved at low concentrations of urea (typically <4M). However, the presence of polymers facilitated unfolding, which occurred at urea concentrations lowered by 2-4 M as compared to unfolding in the absence of polymers (polymer/cyt c ratio of 1:1 g/g). The predominant contribution of coulombic interactions was shown by both the lack of significant impact of the amount of (neutral) azobenzene moieties in the copolymers and the disappearance of destabilization at ionic strength higher than 150 mM. In addition, stability was similar to that of an isolated cyt c, in the presence of a neutral chain bearing acryloyl(oligoethyleneoxide) units instead of the ionized sodium acrylate moieties. DSC measurements showed that in the presence of polymers, cyt c is thermally unfolded in aqueous buffer at temperatures lowered by >20 °C as compared to thermal unfolding in the absence of polymers. Upon exposure to UV light, properties of the polymers chains were perturbed in situ, upon cis/trans isomerization of the azobenzene groups. In polymers displaying a photoresponsive polarity and hydrophobicity switch (conventional azobenzene), the stability of cyt c was not affected by the exposure to light. In contr Topics: Azo Compounds; Cytochromes c; Drug Carriers; Hydrophobic and Hydrophilic Interactions; Light; Polymers; Protein Conformation; Protein Denaturation; Protein Unfolding; Surface-Active Agents | 2012 |
Combining host-guest systems with nonfouling material for the fabrication of a biosurface: toward nearly complete and reversible resistance of cytochrome c.
In this letter, a pH-responsive reactivated biointerface is fabricated using an inclusion reaction between an azobenzene-containing self-assembled monolayer and pH-responsive poly(ethylene glycol)-block-poly(acrylic acid) grafted with cyclodextrins. The pH-responsive interface can be switched between an extended state and a relaxed state for the reversible resistance of cytochrome c adsorption completely in cooperation with protein-resistant poly(ethylene glycol). Topics: Acrylates; Azo Compounds; Cytochromes c; Hydrogen-Ion Concentration; Models, Biological; Polyethylene Glycols; Polymers | 2010 |