cytochrome-c-t has been researched along with 9-12-dioxo-10-dodecenoic-acid* in 2 studies
2 other study(ies) available for cytochrome-c-t and 9-12-dioxo-10-dodecenoic-acid
Article | Year |
---|---|
Proteins modified by the lipid peroxidation aldehyde 9,12-dioxo-10(E)-dodecenoic acid in MCF7 breast cancer cells.
The hydroperoxide of linoleic acid (13-HPODE) degrades to 9,12-dioxo-10(E)-dodecenoic acid (DODE), which readily modifies proteins. This study identified the major proteins in MCF7 cells modified by DODE. To reduce false positives, three methods were used to identify DODE-modified proteins. First, cells were treated with a synthetically biotinylated 13-HPODE (13-HPODE-biotin). Modified proteins were enriched by neutravidin affinity and identified by two-dimensional liquid chromatography--tandem mass spectrometry (2D LC-MS/MS). Second, cells were treated with native 13-HPODE. Protein carbonyls were biotinylated with an aldehyde reactive probe, and modified proteins were enriched by neutravidin affinity and identified by 2D LC-MS/MS. Third, using a newly developed DODE antibody, DODE-modified proteins were located by 2D sodium dodecyl sulfate--polyacrylamide gel electrophoresis and Western blot and identified by in-gel digestion and LC-MS/MS. Analysis of the proteins characterized by all three methods revealed a significant overlap and identified 32 primary proteins modified by DODE in MCF7 cells. These results demonstrated the feasibility for the cellular formation of DODE protein-carbonyl adducts that may be future indicators of oxidative stress. Topics: Cell Line, Tumor; Chromatography, Liquid; Cytochromes c; Fatty Acids, Monounsaturated; Humans; Linoleic Acids; Lipid Peroxidation; Lipid Peroxides; Proteins; Tandem Mass Spectrometry | 2010 |
Induction of endothelial cell apoptosis by lipid hydroperoxide-derived bifunctional electrophiles.
Endothelial dysfunction is considered to be the earliest event in atherogenesis. Oxidative stress, inflammation, and apoptosis play critical roles in its progression and onset. Lipid peroxidation, which occurs during oxidative stress, results in the formation of lipid hydroperoxide-derived bifunctional electrophiles such as 4-hydroxy-2(E)-nonenal that induce apoptosis. In this study, recently identified lipid hydroperoxide-derived bifunctional electrophiles 4-oxo-2(E)-nonenal (ONE; 5-30 microm) and 4,5-epoxy-2(E)-decenal (EDE; 10-20 microM) were shown to cause a dose- and time-dependent apoptosis in EA.hy 926 endothelial cells. This was manifest by morphological changes, caspase-3 activation, and poly(ADP-ribose) polymerase cleavage. Bifunctional electrophiles caused cytochrome c release from mitochondria into the cytosol, implicating a mitochondrial pathway of apoptosis in the endothelial cells. The novel carboxylate-containing lipid hydroperoxide-derived bifunctional electrophile 9,12-dioxo-10(E)-dodecenoic acid was inactive because it could not translocate across the plasma membrane. However, its less polar methyl ester derivative (2-10 microM) was the most potent inducer of apoptosis of any bifunctional electrophile that has been tested. An acute decrease in intracellular glutathione (GSH) preceded the onset of apoptosis in bifunctional electrophile-treated cells. The ability of ONE and EDE to deplete GSH was directly correlated with their predicted reactivity toward nucleophilic amino acids. Liquid chromatography/mass spectrometry methodology was developed in order to examine the intracellular and extracellular concentrations of bifunctional electrophile-derived GSH adducts. Relative intracellular/extracellular ratios of the GSH adducts were identical with the rank order of potency for inducing caspase 3 activation. This suggests that there may be a role for the bifunctional electrophile-derived GSH adducts in the apoptotic response. N-Acetylcysteine rescued bifunctional electrophile-treated cells from apoptosis, whereas the GSH biosynthesis inhibitor d,l-buthionine-(R,S)-sulfoximine sensitized the cells to apoptosis. These data suggest that lipid hydroperoxide-derived bifunctional electrophiles may play an important role in cardiovascular pathology through their ability to induce endothelial cell apoptosis. Topics: Aldehydes; Apoptosis; Caspase 3; Caspases; Cytochromes c; Endothelial Cells; Enzyme Activation; Epoxy Compounds; Fatty Acids, Monounsaturated; Glutathione; Humans; Lipid Peroxidation; Lipid Peroxides; Poly(ADP-ribose) Polymerases | 2005 |