cytochrome-c-t and 5-5-dimethyl-1-pyrroline-1-oxide

cytochrome-c-t has been researched along with 5-5-dimethyl-1-pyrroline-1-oxide* in 5 studies

Other Studies

5 other study(ies) available for cytochrome-c-t and 5-5-dimethyl-1-pyrroline-1-oxide

ArticleYear
Redox equilibration after one-electron reduction of cytochrome c oxidase: radical formation and a possible hydrogen relay mechanism.
    Archives of biochemistry and biophysics, 2014, Jul-15, Volume: 554

    Kinetic studies using UV/visible and EPR spectroscopy were carried out to follow the distribution of electrons within beef heart cytochrome c oxidase (CcO), both active and cyanide-inhibited, following addition of reduced cytochrome c as electron donor. In the initial one-electron reduced state the electron is shared between three redox centers, heme a, CuA and a third site, probably CuB. Using a rapid freeze system and the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) a protein radical was also detected. The EPR spectrum of the DMPO adduct of this radical was consistent with tyrosyl radical capture. This may be a feature of a charge relay mechanism involved in some part of the CcO electron transfer system from bound cytochrome c via CuA and heme a to the a3CuB binuclear center.

    Topics: Animals; Cattle; Cyclic N-Oxides; Cytochromes c; Electron Spin Resonance Spectroscopy; Electron Transport; Electron Transport Complex IV; Free Radicals; Horses; Hydrogen; Kinetics; Models, Biological; Myocardium; Oxidation-Reduction; Spectrophotometry; Spin Labels

2014
Removal of H₂O₂ and generation of superoxide radical: role of cytochrome c and NADH.
    Free radical biology & medicine, 2011, Jul-01, Volume: 51, Issue:1

    In cells, mitochondria, endoplasmic reticulum, and peroxisomes are the major sources of reactive oxygen species (ROS) under physiological and pathophysiological conditions. Cytochrome c (cyt c) is known to participate in mitochondrial electron transport and has antioxidant and peroxidase activities. Under oxidative or nitrative stress, the peroxidase activity of Fe³⁺cyt c is increased. The level of NADH is also increased under pathophysiological conditions such as ischemia and diabetes and a concurrent increase in hydrogen peroxide (H₂O₂) production occurs. Studies were performed to understand the related mechanisms of radical generation and NADH oxidation by Fe³⁺cyt c in the presence of H₂O₂. Electron paramagnetic resonance (EPR) spin trapping studies using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) were performed with NADH, Fe³⁺cyt c, and H₂O₂ in the presence of methyl-β-cyclodextrin. An EPR spectrum corresponding to the superoxide radical adduct of DMPO encapsulated in methyl-β-cyclodextrin was obtained. This EPR signal was quenched by the addition of the superoxide scavenging enzyme Cu,Zn-superoxide dismutase (SOD1). The amount of superoxide radical adduct formed from the oxidation of NADH by the peroxidase activity of Fe³⁺cyt c increased with NADH and H₂O₂ concentration. From these results, we propose a mechanism in which the peroxidase activity of Fe³⁺cyt c oxidizes NADH to NAD(•), which in turn donates an electron to O₂, resulting in superoxide radical formation. A UV-visible spectroscopic study shows that Fe³⁺cyt c is reduced in the presence of both NADH and H₂O₂. Our results suggest that Fe³⁺cyt c could have a novel role in the deleterious effects of ischemia/reperfusion and diabetes due to increased production of superoxide radical. In addition, Fe³⁺cyt c may play a key role in the mitochondrial "ROS-induced ROS-release" signaling and in mitochondrial and cellular injury/death. The increased oxidation of NADH and generation of superoxide radical by this mechanism may have implications for the regulation of apoptotic cell death, endothelial dysfunction, and neurological diseases. We also propose an alternative electron transfer pathway, which may protect mitochondria and mitochondrial proteins from oxidative damage.

    Topics: Animals; beta-Cyclodextrins; Cyclic N-Oxides; Cytochromes c; Electron Spin Resonance Spectroscopy; Electron Transport; Horses; Hydrogen Peroxide; Iron; Mitochondria; NAD; Oxygen; Reactive Oxygen Species; Spin Trapping; Superoxide Dismutase; Superoxide Dismutase-1; Superoxides

2011
Direct mitochondrial dysfunction precedes reactive oxygen species production in amiodarone-induced toxicity in human peripheral lung epithelial HPL1A cells.
    Toxicology and applied pharmacology, 2008, Mar-15, Volume: 227, Issue:3

    Amiodarone (AM), a drug used in the treatment of cardiac dysrrhythmias, can produce severe pulmonary adverse effects, including fibrosis. Although the pathogenesis of AM-induced pulmonary toxicity (AIPT) is not clearly understood, several hypotheses have been advanced, including increased inflammatory mediator release, mitochondrial dysfunction, and free-radical formation. The hypothesis that AM induces formation of reactive oxygen species (ROS) was tested in an in vitro model relevant for AIPT. Human peripheral lung epithelial HPL1A cells, as surrogates for target cells in AIPT, were susceptible to the toxicity of AM and N-desethylamiodarone (DEA), a major AM metabolite. Longer incubations (> or =6 h) of HPL1A cells with 100 microM AM significantly increased ROS formation. In contrast, shorter incubations (2 h) of HPL1A cells with AM resulted in mitochondrial dysfunction and cytoplasmic cytochrome c translocation. Preexposure of HPL1A cells to ubiquinone and alpha-tocopherol was more effective than that with Trolox C or 5,5-dimethylpyrolidine N-oxide (DMPO) at preventing AM cytotoxicity. These data suggest that mitochondrial dysfunction, rather than ROS overproduction, represents an early event in AM-induced toxicity in peripheral lung epithelial cells that may be relevant for triggering AIPT, and antioxidants that target mitochondria may potentially have beneficial effects in AIPT.

    Topics: alpha-Tocopherol; Amiodarone; Anti-Arrhythmia Agents; Cell Line; Chromans; Cyclic N-Oxides; Cytochromes c; Cytoplasm; Epithelial Cells; Humans; Lung; Mitochondria; Reactive Oxygen Species; Ubiquinone

2008
Cadaverine protects Vibrio vulnificus from superoxide stress.
    Journal of microbiology and biotechnology, 2007, Volume: 17, Issue:1

    An electron paramagnetic resonance (EPR) signal characteristic of the 5,5'-dimethyl-1-pyrroline-N-oxide (DMPO)-OH spin adduct, which is formed from the reaction of DMPO with superoxide radicals generated by xanthine oxidase-mediated reaction, was significantly reduced by the cadaverine or Escherichia coli Mn-containing superoxide dismutase (MnSOD). Likewise, cytochrome c reduction by superoxide was inhibited by cadaverine, and the inhibition level increased in proportion to the level of cadaverine. The cadA mutant of Vibrio vulnificus, which does not produce cadaverine because of the lack of lysine decarboxylase, exhibits less tolerance to superoxide stress in comparison with wild type. The results indicate that cadaverine scavenges superoxide radicals, and protects cells from oxidative stress.

    Topics: Antiporters; Bacterial Proteins; Cadaverine; Cyclic N-Oxides; Cytochromes c; Electron Spin Resonance Spectroscopy; Genes, Bacterial; Mutation; Oxidation-Reduction; Oxidative Stress; Spin Labels; Superoxides; Vibrio vulnificus

2007
Involvement of protein radical, protein aggregation, and effects on NO metabolism in the hypochlorite-mediated oxidation of mitochondrial cytochrome c.
    Free radical biology & medicine, 2004, Nov-15, Volume: 37, Issue:10

    Cytochrome c (cyt c)-derived protein radicals, radical adduct aggregates, and protein tyrosine nitration have been implicated in the pro-apoptotic event connecting inflammation to the development of diseases. During inflammation, one of the reactive oxygen species metabolized via neutrophil activation is hypochlorite (HOCl); destruction of the mitochondrial electron transport chain by hypochlorite is considered to be a damaging factor. Previous study has shown that HOCl induces the site-specific oxidation of cyt c at met-80. In this work, we have assessed the hypothesis that exposure of cyt c to physiologically relevant concentrations of HOCl leads to protein-derived radical and consequent protein aggregation, which subsequently affects cyt c's regulation of nitric oxide metabolism. Reaction intermediates, chemical pathways available for protein aggregation, and protein nitration were examined. A weak ESR signal for immobilized nitroxide derived from the protein was detected when a high concentration of cyt c was reacted with hypochlorite in the presence of the nitroso spin trap 2-methyl-2-nitrosopropane. When a low concentration of cyt c was exposed to the physiologically relevant levels of HOCl in the presence of 5,5-dimethyl-pyrroline N-oxide (DMPO), we detected DMPO nitrone adducts derived from both protein and protein aggregate radicals as assessed by Western blot using an antibody raised against the DMPO nitrone adduct. The cyt c-derived protein radicals formed by HOCl were located on lysine and tyrosine residues, with lysine predominating. Cyt c-derived protein aggregates induced by HOCl involved primarily lysine residues and hydrophobic interaction. In addition, HOCl-oxidized cyt c (HOCl-cyt c) exhibited a higher affinity for NO and enhancement of nonenzymatic NO synthesis from nitrite reduction. Furthermore, HOCl-mediated cyt c oxidation also resulted in a significant elevation of cyt c nitration derived from either NO trapping of the cyt c-derived tyrosyl radical or cyt c-catalyzed one-electron oxidation of nitrite.

    Topics: Animals; Cyclic N-Oxides; Cytochromes c; Electron Spin Resonance Spectroscopy; Humans; Hypochlorous Acid; Nitric Oxide; Nitrites; Oxidation-Reduction; Protein Binding; Reactive Oxygen Species; Tyrosine

2004