cytochrome-c-t has been researched along with 2-3-dimethoxy-5-methyl-6-decyl-1-4-benzoquinone* in 3 studies
3 other study(ies) available for cytochrome-c-t and 2-3-dimethoxy-5-methyl-6-decyl-1-4-benzoquinone
Article | Year |
---|---|
Regulation of cytochrome c- and quinol oxidases, and piezotolerance of their activities in the deep-sea piezophile Shewanella violacea DSS12 in response to growth conditions.
The facultative piezophile Shewanella violacea DSS12 is known to have respiratory components that alter under the influence of hydrostatic pressure during growth, suggesting that its respiratory system is adapted to high pressure. We analyzed the expression of the genes encoding terminal oxidases and some respiratory components of DSS12 under various growth conditions. The expression of some of the genes during growth was regulated by both the O2 concentration and hydrostatic pressure. Additionally, the activities of cytochrome c oxidase and quinol oxidase of the membrane fraction of DSS12 grown under various conditions were measured under high pressure. The piezotolerance of cytochrome c oxidase activity was dependent on the O2 concentration during growth, while that of quinol oxidase was influenced by pressure during growth. The activity of quinol oxidase was more piezotolerant than that of cytochrome c oxidase under all growth conditions. Even in the membranes of the non-piezophile Shewanella amazonensis, quinol oxidase was more piezotolerant than cytochrome c oxidase, although both were highly piezosensitive as compared to the activities in DSS12. By phylogenetic analysis, piezophile-specific cytochrome c oxidase, which is also found in the genome of DSS12, was identified in piezophilic Shewanella and related genera. Our observations suggest that DSS12 constitutively expresses piezotolerant respiratory terminal oxidases, and that lower O2 concentrations and higher hydrostatic pressures induce higher piezotolerance in both types of terminal oxidases. Quinol oxidase might be the dominant terminal oxidase in high-pressure environments, while cytochrome c oxidase might also contribute. These features should contribute to adaptation of DSS12 in deep-sea environments. Topics: Cell Proliferation; Cytochromes c; Gene Expression Regulation, Bacterial; Hydrostatic Pressure; Oxidoreductases; Shewanella; Transcription, Genetic; Ubiquinone | 2013 |
Human disease-related mutations in cytochrome b studied in yeast.
Several mutations in the mitochondrially encoded cytochrome b have been reported in patients. To characterize their effect, we introduced six "human" mutations, namely G33S, S152P, G252D, Y279C, G291D, and Delta252-259 in the highly similar yeast cytochrome b. G252D showed wild type behavior in standard conditions. However, Asp-252 may interfere with structural lipid and, in consequence, destabilize the enzyme assembly, which could explain the pathogenicity of the mutation. The mutations G33S, S152P, G291D, and Delta252-259 were clearly pathogenic. They caused a severe decrease of the respiratory function and altered the assembly of the iron-sulfur protein in the bc(1) complex, as observed by immunodetection. Suppressor mutations that partially restored the respiratory function impaired by S152P or G291D were found in or close to the hinge region of the iron-sulfur protein, suggesting that this region may play a role in the stable binding of the subunit to the bc(1) complex. Y279C caused a significant decrease of the bc(1) function and perturbed the quinol binding. The EPR spectra showed an altered signal, indicative of a lower occupancy of the Q(o) site. The effect of human mutation of residue 279 was confirmed by another change, Y279A, which had a more severe effect on Q(o) site properties. Thus by using yeast as a model system, we identified the molecular basis of the respiratory defect caused by the disease mutations in cytochrome b. Topics: Aspartic Acid; Binding Sites; Blotting, Western; Cytochromes b; Cytochromes c; Cytochromes c1; Electron Spin Resonance Spectroscopy; Electron Transport Complex III; Fungal Proteins; Genetic Diseases, Inborn; Humans; Immunoblotting; Intracellular Membranes; Iron-Sulfur Proteins; Kinetics; Lipids; Magnetics; Mitochondria; Models, Molecular; Mutation; Saccharomyces cerevisiae Proteins; Spectrophotometry; Suppression, Genetic; Temperature; Ubiquinone | 2004 |
Anti-cooperative oxidation of ubiquinol by the yeast cytochrome bc1 complex.
We have investigated the interaction between monomers of the dimeric yeast cytochrome bc(1) complex by analyzing the pre-steady and steady state activities of the isolated enzyme in the presence of antimycin under conditions that allow the first turnover of ubiquinol oxidation to be observable in cytochrome c(1) reduction. At pH 8.8, where the redox potential of the iron-sulfur protein is approximately 200 mV and in a bc(1) complex with a mutated iron-sulfur protein of equally low redox potential, the amount of cytochrome c(1) reduced by several equivalents of decyl-ubiquinol in the presence of antimycin corresponded to only half of that present in the bc(1) complex. Similar experiments in the presence of several equivalents of cytochrome c also showed only half of the bc(1) complex participating in quinol oxidation. The extent of cytochrome b reduced corresponded to two b(H) hemes undergoing reduction through one center P per dimer, indicating electron transfer between the two cytochrome b subunits. Antimycin stimulated the ubiquinol-cytochrome c reductase activity of the bc(1) complex at low inhibitor/enzyme ratios. This stimulation could only be fitted to a model in which half of the bc(1) dimer is inactive when both center N sites are free, becoming active upon binding of one center N inhibitor molecule per dimer, and there is electron transfer between the cytochrome b subunits of the dimer. These results are consistent with an alternating half-of-the-sites mechanism of ubiquinol oxidation in the bc(1) complex dimer. Topics: Antimycin A; Cytochromes b; Cytochromes c; Dimerization; Electron Transport Complex III; Fungal Proteins; Heme; Hydrogen-Ion Concentration; Iron-Sulfur Proteins; Kinetics; Mutation; Oxidation-Reduction; Oxygen; Spectrophotometry; Time Factors; Ubiquinone; Ultraviolet Rays | 2004 |