cytochrome-c-t and 1-palmitoyl-2-oleoylphosphatidylcholine

cytochrome-c-t has been researched along with 1-palmitoyl-2-oleoylphosphatidylcholine* in 6 studies

Other Studies

6 other study(ies) available for cytochrome-c-t and 1-palmitoyl-2-oleoylphosphatidylcholine

ArticleYear
Not only oxidation of cardiolipin affects the affinity of cytochrome C for lipid bilayers.
    The journal of physical chemistry. B, 2014, Oct-16, Volume: 118, Issue:41

    Fluorescence quenching of lipid-bound pyrene was used to assess the binding of cytochrome c (cyt c) to liposomes that mimic the inner mitochondrial membrane (IMM) POPC/DOPE/TOCL, with the conditions that it did or did not contain oxidized phosphatidylcholine molecules, i.e., 1-O-hexadecyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC), or a mixture of two hydroperoxide isomers derived from POPC (POPCOX). The binding isotherms reveal two dissociation constants, K(D)(1) and K(D)(2), representing, respectively, the low- and high-affinity states of the membrane. These dissociation constants probably are due to the lipid reorganization promoted by cyt c, as observed in giant unilamellar vesicles that contain fluorescent cardiolipin (CL). The presence of PazePC, which has a nonreactive carboxylic group, increased the K(D)(1) and K(D)(2) values 1.2- and 4.5-fold, respectively. The presence of POPCOX which has a reactive peroxide group, decreased the K(D)(1) value 1.5-fold, increased the K(D)(2) value 10-fold, and significantly reduced the salt-induced detachment of cyt c. MALDI-TOF spectrometry analysis of cyt c incubated with liposomes containing POPCox demonstrated a mass increase corresponding to the formation of nonenal adducts as hydrophobic anchors. Electronic absorption spectroscopy, circular dichroism, and magnetic circular dichroism demonstrated that all of the lipids studied promoted changes in the cyt c coordination sphere. Therefore, in the presence of CL, the oxidation of zwitterionic lipids also promotes changes in the cyt c structure and in the affinity for lipid bilayers.

    Topics: Animals; Cardiolipins; Circular Dichroism; Cytochromes c; Fish Proteins; Fluorescence; Horses; Hydrophobic and Hydrophilic Interactions; Lipid Bilayers; Liposomes; Mitochondrial Membranes; Models, Biological; Molecular Structure; Myocardium; Oxidation-Reduction; Phosphatidylcholines; Phosphatidylethanolamines; Phosphorylcholine; Pyrenes; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization; Tuna

2014
Transmembrane pore formation by the carboxyl terminus of Bax protein.
    Biochimica et biophysica acta, 2013, Volume: 1828, Issue:2

    Bax is a cytosolic protein that responds to various apoptotic signals by binding to the outer mitochondrial membrane, resulting in membrane permeabilization, release of cytochrome c, and caspase-mediated cell death. Currently discussed mechanisms of membrane perforation include formation of hetero-oligomeric complexes of Bax with other pro-apoptotic proteins such as Bak, or membrane insertion of multiple hydrophobic helices of Bax, or formation of lipidic pores physically aided by mitochondrial membrane-inserted proteins. There is compelling evidence provided by our and other groups indicating that the C-terminal "helix 9" of Bax mediates membrane binding and pore formation, yet the mechanism of pore forming capability of Bax C-terminus remains unclear. Here we show that a 20-amino acid peptide corresponding to Bax C-terminus (VTIFVAGVLTASLTIWKKMG) and two mutants where the two lysines are replaced with glutamate or leucine have potent membrane pore forming activities in zwitterionic and anionic phospholipid membranes. Analysis of the kinetics of calcein release from lipid vesicles allows determination of rate constants of pore formation, peptide-peptide affinities within the membrane, the oligomeric state of transmembrane pores, and the importance of the lysine residues. These data provide insight into the molecular details of membrane pore formation by a Bax-derived peptide and open new opportunities for design of peptide-based cytotoxic agents.

    Topics: Amino Acid Sequence; Apoptosis; bcl-2 Homologous Antagonist-Killer Protein; bcl-2-Associated X Protein; Caspases; Cytochromes c; Dose-Response Relationship, Drug; Fluoresceins; Humans; Kinetics; Mitochondrial Membranes; Models, Statistical; Molecular Sequence Data; Mutation; Peptides; Phosphatidylcholines; Phosphatidylglycerols; Protein Structure, Tertiary; Time Factors

2013
Assigning membrane binding geometry of cytochrome C by polarized light spectroscopy.
    Biophysical journal, 2009, Apr-22, Volume: 96, Issue:8

    In this work we demonstrate how polarized light absorption spectroscopy (linear dichroism (LD)) analysis of the peptide ultraviolet-visible spectrum of a membrane-associated protein (cytochrome (cyt) c) allows orientation and structure to be assessed with quite high accuracy in a native membrane environment that can be systematically varied with respect to lipid composition. Cyt c binds strongly to negatively charged lipid bilayers with a distinct orientation in which its alpha-helical segments are on average parallel to the membrane surface. Further information is provided by the LD of the pi-pi( *) transitions of the heme porphyrin and transitions of aromatic residues, mainly a single tryptophan. A good correlation with NMR data was found, and combining NMR structural data with LD angular data allowed the whole protein to be docked to the lipid membrane. When the redox state of cyt c was changed, distinct variations in the LD spectrum of the heme Soret band were seen corresponding to changes in electronic transition energies; however, no significant change in the overall protein orientation or structure was observed. Cyt c is known to interact in a specific manner with the doubly negatively charged lipid cardiolipin, and incorporation of this lipid into the membrane at physiologically relevant levels was indeed found to affect the protein orientation and its alpha-helical content. The detail in which cyt c binding is described in this study shows the potential of LD spectroscopy using shear-deformed lipid vesicles as a new methodology for exploring membrane protein structure and orientation.

    Topics: Animals; Cardiolipins; Circular Dichroism; Cytochromes c; Horses; Light; Lipid Bilayers; Models, Molecular; Myocardium; Nuclear Magnetic Resonance, Biomolecular; Oxidation-Reduction; Phosphatidylcholines; Phosphatidylglycerols; Protein Binding; Protein Structure, Secondary; Spectrum Analysis

2009
Specific adsorption of cytochrome C on cardiolipin-glycerophospholipid monolayers and bilayers.
    Langmuir : the ACS journal of surfaces and colloids, 2007, May-08, Volume: 23, Issue:10

    In this study, we examined the adsorption of cytochrome c (cyt c) on monolayers and liposomes formed from (i) pure 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), or cardiolipin (CL) and on (ii) the more thermodynamically stable binary mixtures of POPE/CL (0.8:0.2 mol/mol) and POPC/CL (0.6:0.4 mol/mol). Constant surface pressure experiments showed that the maximum and minimum interactions occurred in the pure CL (anionic phospholipid) and the pure POPE (zwitterion) monolayers, respectively. Observation by atomic force microscopy (AFM) of the images of Langmuir-Blodgett (LB) films extracted at 30 mN m-1 suggests that the different interactions of cyt c with POPE/CL and the POPC/CL monolayers could be due to lateral phase separation occurring in the POPE/CL mixture. The competition between 8-anilino-1-naphthalene sulfonate (ANS) and cyt c for the same binding sites in liposomes that have identical nominal compositions with respect to those of the monolayers was used to obtain binding parameters. In agreement with the monolayer experiments, the most binding was observed in POPE/CL liposomes. All of our observations strongly support the existence of selective adsorption of cyt c on CL, which is modulated differently by different neutral phospholipids (POPE and POPC).

    Topics: Adsorption; Cardiolipins; Cytochromes c; Lipid Bilayers; Liposomes; Microscopy, Atomic Force; Phosphatidylcholines; Phosphatidylethanolamines; Pressure

2007
Searching for the molecular arrangement of transmembrane ceramide channels.
    Biophysical journal, 2006, Apr-01, Volume: 90, Issue:7

    Ceramides have been implicated in the initiation of apoptosis by permeabilizing the mitochondrial outer membrane to small proteins, including cytochrome c. In addition, ceramides were shown to form large metastable channels in planar membranes and liposomes, indicating that these lipids permeabilize membranes directly. Here we analyze molecular models of ceramide channels and test their stability in molecular dynamics simulations. The structural units are columns of four to six ceramides H-bonded via amide groups and arranged as staves in either a parallel or antiparallel manner. Two cylindrical assemblies of 14 columns (four or six molecules per column) were embedded in a fully hydrated palmitoyloleoyl-phosphatidylcholine phospholipid bilayer, and simulated for 24 ns in total. After equilibration, the water-filled pore adopted an hourglass-like shape as headgroups of ceramides and phospholipids formed a smooth continuous interface. The structure-stabilizing interactions were both hydrogen bonds between the headgroups (including water-mediated interactions) and packing of the hydrocarbon tails. Ceramide's essential double bond reduced the mobility of the hydrocarbon tails and stabilized their packing. The six-column assembly remained stable throughout a 10-ns simulation. During simulations of four-column assemblies, pairs of columns displayed the tendency of splitting out from the channels, consistent with the previously proposed mechanism of channel disassembly.

    Topics: Apoptosis; Cell Membrane; Ceramides; Computer Simulation; Cytochromes c; Hydrogen; Hydrogen Bonding; Ions; Lipid Bilayers; Mitochondria; Mitochondrial Membranes; Models, Chemical; Models, Molecular; Models, Statistical; Molecular Conformation; Palmitic Acid; Phosphatidylcholines; Phospholipids; Protein Conformation; Static Electricity; Time Factors; Water

2006
Hydration at the membrane protein-lipid interface.
    Biophysical journal, 1992, Volume: 63, Issue:4

    Evidence has been found for the existence water at the protein-lipid hydrophobic interface of the membrane proteins, gramicidin and apocytochrome C, using two related fluorescence spectroscopic approaches. The first approach exploited the fact that the presence of water in the excited state solvent cage of a fluorophore increases the rate of decay. For 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-palmitoyl-2-[[2-[4-(6-phenyl-trans-1,3,5- hexatrienyl)phenyl]ethyl]carbonyl]-3-sn-PC (DPH-PC), where the fluorophores are located in the hydrophobic core of the lipid bilayer, the introduction of gramicidin reduced the fluorescence lifetime, indicative of an increased presence of water in the bilayer. Since a high protein:lipid ratio was used, the fluorophores were forced to be adjacent to the protein hydrophobic surface, hence the presence of water in this region could be inferred. Cholesterol is known to reduce the water content of lipid bilayers and this effect was maintained at the protein-lipid interface with both gramicidin and apocytochrome C, again suggesting hydration in this region. The second approach was to use the fluorescence enhancement induced by exchanging deuterium oxide (D2O) for H2O. Both the fluorescence intensities of trimethylammonium-DPH, located in the lipid head group region, and of the gramicidin intrinsic tryptophans were greater in a D2O buffer compared with H2O, showing that the fluorophores were exposed to water in the bilayer at the protein-lipid interface. In the presence of cholesterol the fluorescence intensity ratio of D2O to H2O decreased, indicating a removal of water by the cholesterol, in keeping with the lifetime data. Altered hydration at the protein-lipid interface could affect conformation, thereby offering a new route by which membrane protein functioning may be modified.

    Topics: Apoproteins; Cholesterol; Cytochrome c Group; Cytochromes c; Gramicidin; Lipid Bilayers; Membrane Lipids; Membrane Proteins; Phosphatidylcholines; Spectrometry, Fluorescence; Water

1992