cytochalasin-d has been researched along with sphingosine-1-phosphate* in 2 studies
2 other study(ies) available for cytochalasin-d and sphingosine-1-phosphate
Article | Year |
---|---|
Activation of ATP secretion via volume-regulated anion channels by sphingosine-1-phosphate in RAW macrophages.
We report the activation of outwardly rectifying anion currents by sphingosine-1-phosphate (S1P) in the murine macrophage cell line RAW 264.7. The S1P-induced current is mainly carried by anions, because the reversal potential of the current was shifted by replacement of extracellular Cl(-) by glutamate(-) but not when extracellular Na(+) was substituted by Tris(+). The inhibition of the current by hypertonic extracellular or hypotonic intracellular solution as well as the inhibitory effects of NPPB, tamoxifen, and glibenclamide indicates that the anion current is mediated by volume-regulated anion channels (VRAC). The S1P effect was blocked by intracellular GDPβS and W123, which points to signaling via the S1P receptor 1 (S1PR1) and G proteins. As cytochalasin D diminished the action of S1P, we conclude that the actin cytoskeleton is involved in the stimulation of VRAC. S1P and hypotonic extracellular solution induced secretion of ATP from the macrophages, which in both cases was blocked in a similar way by typical VRAC blockers. We suppose that the S1P-induced ATP secretion in macrophages via activation of VRAC constitutes a functional link between sphingolipid and purinergic signaling in essential processes such as inflammation and migration of leukocytes as well as phagocytosis and the killing of intracellular bacteria. Topics: Adenosine Triphosphate; Animals; Cell Line; Cell Size; Chlorides; Cytochalasin D; Glyburide; GTP-Binding Proteins; Ion Channels; Lysophospholipids; Macrophages; Mice; Nitrobenzoates; Receptors, Lysosphingolipid; Sodium; Sphingosine; Tamoxifen | 2015 |
Actin cytoskeleton regulates stretch-activated Ca2+ influx in human pulmonary microvascular endothelial cells.
During high tidal volume mechanical ventilation in patients with acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), regions of the lung are exposed to excessive stretch, causing inflammatory responses and further lung damage. In this study, the effects of mechanical stretch on intracellular Ca(2+) concentration ([Ca(2+)](i)), which regulates a variety of endothelial properties, were investigated in human pulmonary microvascular endothelial cells (HPMVECs). HPMVECs grown on fibronectin-coated silicon chambers were exposed to uniaxial stretching, using a cell-stretching apparatus. After stretching and subsequent unloading, [Ca(2+)](i), as measured by fura-2 fluorescence, was transiently increased in a strain amplitude-dependent manner. The elevation of [Ca(2+)](i) induced by stretch was not evident in the Ca(2+)-free solution and was blocked by Gd(3+), a stretch-activated channel inhibitor, or ruthenium red, a transient receptor potential vanilloid inhibitor. The disruption of actin polymerization with cytochalasin D inhibited the stretch-induced elevation of [Ca(2+)](i). In contrast, increases in [Ca(2+)](i) induced by thapsigargin or thrombin were not affected by cytochalasin D. Increased actin polymerization with sphingosine-1-phosphate or jasplakinolide enhanced the stretch-induced elevation of [Ca(2+)](i). A simple network model of the cytoskeleton was also developed in support of the notion that actin stress fibers are required for efficient force transmission to open stretch-activated Ca(2+) channels. In conclusion, mechanical stretch activates Ca(2+) influx via stretch-activated channels which are tightly regulated by the actin cytoskeleton different from other Ca(2+) influx pathways such as receptor-operated and store-operated Ca(2+) entries in HPMVECs. These results suggest that abnormal Ca(2+) homeostasis because of excessive mechanical stretch during mechanical ventilation may play a role in the progression of ALI/ARDS. Topics: Actins; Calcium; Cells, Cultured; Cytochalasin D; Cytoskeleton; Depsipeptides; Humans; Lung; Lysophospholipids; Microcirculation; Microscopy, Fluorescence; Models, Chemical; Sphingosine; Stress, Mechanical; Thapsigargin | 2010 |