cytochalasin-d has been researched along with rottlerin* in 3 studies
3 other study(ies) available for cytochalasin-d and rottlerin
Article | Year |
---|---|
Involvement of Endocytosis in the Transdermal Penetration Mechanism of Ketoprofen Nanoparticles.
We previously designed a novel transdermal formulation containing ketoprofen solid nanoparticles (KET-NPs formulation), and showed that the skin penetration from the KET-NPs formulation was higher than that of a transdermal formulation containing ketoprofen microparticles (KET-MPs formulation). However, the precise mechanism for the skin penetration from the KET-NPs formulation was not clear. In this study we investigated whether energy-dependent endocytosis relates to the transdermal delivery from a 1.5% KET-NPs formulation. Transdermal formulations were prepared by a bead mill method using additives including methylcellulose and carbopol 934. The mean particle size of the ketoprofen nanoparticles was 98.3 nm. Four inhibitors of endocytosis dissolved in 0.5% DMSO (54 μM nystatin, a caveolae-mediated endocytosis inhibitor; 40 μM dynasore, a clathrin-mediated endocytosis inhibitor; 2 μM rottlerin, a macropinocytosis inhibitor; 10 μM cytochalasin D, a phagocytosis inhibitor) were used in this study. In the transdermal penetration study using a Franz diffusion cell, skin penetration through rat skin treated with cytochalasin D was similar to the control (DMSO) group. In contrast to the results for cytochalasin D, skin penetration from the KET-NPs formulation was significantly decreased by treatment with nystatin, dynasore or rottlerin with penetrated ketoprofen concentration-time curves ( Topics: Acetophenones; Administration, Cutaneous; Animals; Anti-Inflammatory Agents, Non-Steroidal; Benzopyrans; Cells, Cultured; Cytochalasin D; Drug Liberation; Endocytosis; Hydrazones; Ketoprofen; Male; Nanoparticles; Nystatin; Rats; Rats, Wistar; Skin; Skin Absorption | 2018 |
Kaposi's sarcoma-associated herpesvirus utilizes an actin polymerization-dependent macropinocytic pathway to enter human dermal microvascular endothelial and human umbilical vein endothelial cells.
Kaposi's sarcoma-associated herpesvirus (KSHV) utilizes clathrin-mediated endocytosis for its infectious entry into human foreskin fibroblast (HFF) cells (S. M. Akula, P. P. Naranatt, N.-S. Walia, F.-Z. Wang, B. Fegley, and B. Chandran, J. Virol. 77:7978-7990, 2003). Here, we characterized KSHV entry into primary human microvascular dermal endothelial (HMVEC-d) and human umbilical vein endothelial (HUVEC) cells. Similar to the results for HMVEC-d cells, KSHV infection of HUVEC cells also resulted in an initial high level and subsequent decline in the expression of the lytic switch gene, ORF50, while latent gene expression persisted. Internalized virus particles enclosed in irregular vesicles were observed by electron microscopy of infected HMVEC-d cells. At an early time of infection, colocalization of KSHV capsid with envelope was observed by immunofluorescence analysis, thus demonstrating endocytosis of intact enveloped virus particles. Chlorpromazine, an inhibitor of clathrin-mediated endocytosis, and filipin (C(35)H(58)O(11)), a caveolar endocytosis inhibitor, did not have any effect on KSHV binding, entry (DNA internalization), or gene expression in HMVEC-d and HUVEC cells. In contrast to the results for HFF cells, virus entry and gene expression in both types of endothelial cells were significantly blocked by macropinocytosis inhibitors (EIPA [5-N-ethyl-N-isoproamiloride] and rottlerin [C(30)H(28)O(8)]) and by cytochalasin D, which affects actin polymerization. Inhibition of lipid raft blocked viral gene expression in HMVEC-d cells but not in HUVEC or HFF cells. In HMVEC-d and HUVEC cells, KSHV induced the actin polymerization and formation of lamellipodial extensions that are essential for macropinocytosis. Inhibition of macropinocytosis resulted in the distribution of viral capsids at the HMVEC-d cell periphery, and capsids did not associate with microtubules involved in the nuclear delivery of viral DNA. Internalized KSHV in HMVEC-d and HUVEC cells colocalized with the macropinocytosis marker dextran and not with the clathrin pathway marker transferrin or with caveolin. Dynasore, an inhibitor of dynamin, did not block viral entry into endothelial cells but did inhibit entry into HFF cells. KSHV was not associated with the early endosome marker EEA-1 in HMVEC-d cells, but rather with the late endosome marker LAMP1, as well as with Rab34 GTPase that is known to regulate macropinocytosis. Silencing Rab34 with small interfering RNA dramatically inhib Topics: Acetophenones; Actins; Amiloride; Benzopyrans; Cells, Cultured; Chlorpromazine; Clathrin; Cytochalasin D; DNA, Viral; Endothelial Cells; Fibroblasts; Filipin; Gene Expression Regulation, Viral; Herpesvirus 8, Human; Humans; Hydrogen-Ion Concentration; Immediate-Early Proteins; Pinocytosis; rab GTP-Binding Proteins; Trans-Activators; Umbilical Veins; Virus Internalization | 2009 |
PKC-epsilon regulates basolateral endocytosis in human T84 intestinal epithelia: role of F-actin and MARCKS.
Protein kinase C (PKC) and the actin cytoskeleton are critical effectors of membrane trafficking in mammalian cells. In polarized epithelia, the role of these factors in endocytic events at either the apical or basolateral membrane is poorly defined. In the present study, phorbol 12-myristate 13-acetate (PMA) and other activators of PKC selectively enhanced basolateral but not apical fluid-phase endocytosis in human T84 intestinal epithelia. Stimulation of basolateral endocytosis was blocked by the conventional and novel PKC inhibitor Gö-6850, but not the conventional PKC inhibitor Gö-6976, and correlated with translocation of the novel PKC isoform PKC-epsilon. PMA treatment induced remodeling of basolateral F-actin. The actin disassembler cytochalasin D stimulated basolateral endocytosis and enhanced stimulation of endocytosis by PMA, whereas PMA-stimulated endocytosis was blocked by the F-actin stabilizers phalloidin and jasplakinolide. PMA induced membrane-to-cytosol redistribution of the F-actin cross-linking protein myristoylated alanine-rich C kinase substrate (MARCKS). Cytochalasin D also induced MARCKS translocation and enhanced PMA-stimulated translocation of MARCKS. A myristoylated peptide corresponding to the phosphorylation site domain of MARCKS inhibited both MARCKS translocation and PMA stimulation of endocytosis. MARCKS translocation was inhibited by Gö-6850 but not Gö-6976. The results suggest that a novel PKC isoform, likely PKC-epsilon, stimulates basolateral endocytosis in model epithelia by a mechanism that involves F-actin and MARCKS. Topics: Acetophenones; Acetylcholine; Actin Cytoskeleton; Actins; Amino Acid Sequence; Benzopyrans; Biological Transport; Carbachol; Carbazoles; Carcinogens; Cell Membrane; Cell Polarity; Cells, Cultured; Cholinergic Agonists; Cross-Linking Reagents; Cytochalasin D; Diglycerides; Endocytosis; Enzyme Inhibitors; Epithelial Cells; Humans; Indoles; Intestines; Intracellular Signaling Peptides and Proteins; Isoenzymes; Maleimides; Membrane Proteins; Molecular Sequence Data; Myristoylated Alanine-Rich C Kinase Substrate; Nucleic Acid Synthesis Inhibitors; Pinocytosis; Protein Kinase C; Protein Kinase C-epsilon; Proteins; Tetradecanoylphorbol Acetate | 1999 |